{"title":"<i>E. coli</i> as a Smart Thermo-Vector for Combating Solid Tumors: A Synergistic Heat-Induced Cancer Therapy Approach.","authors":"Tashmeen Kaur, Neeta Devi, Deepika Sharma","doi":"10.1021/acs.bioconjchem.5c00102","DOIUrl":null,"url":null,"abstract":"<p><p>Heat-induced cancer therapies such as magnetic hyperthermia-based cancer therapy (MHCT) and photothermal tumor ablation (PTT) have garnered significant attention as minimally invasive new-generation cancer therapy modalities. However, solid tumors associated with hypoxia present a considerable challenge to effective cancer therapy. In this study, we took up the challenge of mitigating the limiting penetration ability of nanoparticles by integrating polydopamine-coated magnetic nanoparticles and motile anaerobic bacteria (PDBs) to function as a smart thermo-vector. The developed PDBs are capable of self-navigating hypoxic tumors and as thermo-therapy agents with the ability to induce heat through exposure to an alternating magnetic field or near-infrared laser light. The thermo-vector system exhibited a dual-functioning synergistic antitumor effect of MHCT and PTT and an outstanding tumor targeting efficiency, outperforming the conventional 'nanoparticles only' approach. The heat-induced cellular oxidative stress and disrupted mitochondrial function led to 80% cellular cytotoxicity within 24 h of treatment. The PDB-based approach led to complete tumor regression in c57BL/6 mice within 21 days of treatment and a tumor-free survival for 60 days without recurrence, proving the capability of the developed PDBs in combatting solid tumors.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":"867-880"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.5c00102","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Heat-induced cancer therapies such as magnetic hyperthermia-based cancer therapy (MHCT) and photothermal tumor ablation (PTT) have garnered significant attention as minimally invasive new-generation cancer therapy modalities. However, solid tumors associated with hypoxia present a considerable challenge to effective cancer therapy. In this study, we took up the challenge of mitigating the limiting penetration ability of nanoparticles by integrating polydopamine-coated magnetic nanoparticles and motile anaerobic bacteria (PDBs) to function as a smart thermo-vector. The developed PDBs are capable of self-navigating hypoxic tumors and as thermo-therapy agents with the ability to induce heat through exposure to an alternating magnetic field or near-infrared laser light. The thermo-vector system exhibited a dual-functioning synergistic antitumor effect of MHCT and PTT and an outstanding tumor targeting efficiency, outperforming the conventional 'nanoparticles only' approach. The heat-induced cellular oxidative stress and disrupted mitochondrial function led to 80% cellular cytotoxicity within 24 h of treatment. The PDB-based approach led to complete tumor regression in c57BL/6 mice within 21 days of treatment and a tumor-free survival for 60 days without recurrence, proving the capability of the developed PDBs in combatting solid tumors.
期刊介绍:
Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.