Defect engineering in two-dimensional materials for photocatalysis: A mini-review of first-principles design

IF 3.1 4区 工程技术 Q3 ENERGY & FUELS
Yiqing Chen, Xiao-Yan Li, Pengfei Ou
{"title":"Defect engineering in two-dimensional materials for photocatalysis: A mini-review of first-principles design","authors":"Yiqing Chen,&nbsp;Xiao-Yan Li,&nbsp;Pengfei Ou","doi":"10.1007/s11708-024-0961-5","DOIUrl":null,"url":null,"abstract":"<div><p>Two-dimensional (2D) materials have emerged as a significant class of materials promising for photocatalysis, and defect engineering offers an effective route for enhancing their photocatalytic performance. In this mini-review, a first-principles design perspective on defect engineering in 2D materials for photocatalysis is provided. Various types of defects in 2D materials, spanning point, line, and planar defects are explored, and their influence on the intrinsic properties and photocatalytic efficacy of these materials is highlighted. Additionally, the use of theoretical descriptors to characterize the stability, electronic, optical, and catalytic properties of 2D defective systems is summarized. Central to the discussion is the understanding of electronic structure, optical properties, and reaction mechanisms to inform the rational design of photocatalysts based on 2D materials for enhanced photocatalytic performance. This mini-review aims to provide insights into the computational design of 2D defect systems tailored for efficient photocatalytic applications.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 1","pages":"59 - 68"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-024-0961-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) materials have emerged as a significant class of materials promising for photocatalysis, and defect engineering offers an effective route for enhancing their photocatalytic performance. In this mini-review, a first-principles design perspective on defect engineering in 2D materials for photocatalysis is provided. Various types of defects in 2D materials, spanning point, line, and planar defects are explored, and their influence on the intrinsic properties and photocatalytic efficacy of these materials is highlighted. Additionally, the use of theoretical descriptors to characterize the stability, electronic, optical, and catalytic properties of 2D defective systems is summarized. Central to the discussion is the understanding of electronic structure, optical properties, and reaction mechanisms to inform the rational design of photocatalysts based on 2D materials for enhanced photocatalytic performance. This mini-review aims to provide insights into the computational design of 2D defect systems tailored for efficient photocatalytic applications.

二维光催化材料中的缺陷工程:第一原理设计的综述
二维(2D)材料已成为一类具有光催化前景的重要材料,而缺陷工程为提高其光催化性能提供了有效途径。在这篇小型综述中,提供了二维光催化材料缺陷工程的第一性原理设计观点。探讨了二维材料中各种类型的缺陷,包括点缺陷、线缺陷和平面缺陷,以及它们对这些材料的内在性质和光催化效率的影响。此外,使用理论描述符来表征二维缺陷体系的稳定性,电子,光学和催化性能进行了总结。讨论的核心是对电子结构、光学性质和反应机制的理解,从而为基于二维材料的光催化剂的合理设计提供信息,以增强光催化性能。这篇小型综述旨在为高效光催化应用量身定制的二维缺陷系统的计算设计提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Energy
Frontiers in Energy Energy-Energy Engineering and Power Technology
CiteScore
5.90
自引率
6.90%
发文量
708
期刊介绍: Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy. Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues. Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research. High-quality papers are solicited in, but are not limited to the following areas: -Fundamental energy science -Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency -Energy and the environment, including pollution control, energy efficiency and climate change -Energy economics, strategy and policy -Emerging energy issue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信