{"title":"Dolphin-Inspired Skin Microvibrations Offer a Novel Pressure-Dominated Drag Reduction Mechanism","authors":"Dongyue Wang, Hao Liu","doi":"10.1007/s42235-024-00638-9","DOIUrl":null,"url":null,"abstract":"<div><p>The cutaneous ridges on dolphin skin have long been believed to effectively reduce friction drag, thereby contributing to overall drag reduction. However, since these skin ridges are oriented perpendicular to the swimming direction, they also generate additional pressure drag, raising questions about the impact of the shape-induced pressure forces on swimming. Inspired by the microvibrations observed on dolphin skin, we hypothesize that the microstructure on dolphin skin is not static but dynamically oscillates in the form of Longitudinal Micro-Ultrasonic Waves (LMUWs). To explore this, we carried out a series of Computational Fluid Dynamics (CFD) simulations based on Large Eddy Simulation (LES) model to investigate the impact of pressure drag on the total drag acting on an oscillating skin surface under realistic turbulent flow conditions. The results indicate that the dynamic skin oscillations induce a new dynamic Stokes boundary layer, which has the potential to convert pressure drag into a negative force, thereby reducing total drag under the influence of traveling LMUW excitations. Furthermore, a relative velocity <i>ξ</i>, defined as the difference between the wave speed <i>c</i> and the external flow speed <i>U</i>, is introduced to evaluate the drag-reduction effect dominated by pressure. The findings reveal that pressure drag remains negative when <i>ξ</i> > 0. As <i>ξ</i> increases, the thrust effect induced by negative pressure becomes increasingly significant, ultimately counteracting friction drag and eliminating total drag. This pressure-dominated drag reduction mechanism thus demonstrates a novel strategy for the drag reduction technology and the potential of unveiling the mysteries behind dolphin swimming.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"22 2","pages":"793 - 804"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42235-024-00638-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00638-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The cutaneous ridges on dolphin skin have long been believed to effectively reduce friction drag, thereby contributing to overall drag reduction. However, since these skin ridges are oriented perpendicular to the swimming direction, they also generate additional pressure drag, raising questions about the impact of the shape-induced pressure forces on swimming. Inspired by the microvibrations observed on dolphin skin, we hypothesize that the microstructure on dolphin skin is not static but dynamically oscillates in the form of Longitudinal Micro-Ultrasonic Waves (LMUWs). To explore this, we carried out a series of Computational Fluid Dynamics (CFD) simulations based on Large Eddy Simulation (LES) model to investigate the impact of pressure drag on the total drag acting on an oscillating skin surface under realistic turbulent flow conditions. The results indicate that the dynamic skin oscillations induce a new dynamic Stokes boundary layer, which has the potential to convert pressure drag into a negative force, thereby reducing total drag under the influence of traveling LMUW excitations. Furthermore, a relative velocity ξ, defined as the difference between the wave speed c and the external flow speed U, is introduced to evaluate the drag-reduction effect dominated by pressure. The findings reveal that pressure drag remains negative when ξ > 0. As ξ increases, the thrust effect induced by negative pressure becomes increasingly significant, ultimately counteracting friction drag and eliminating total drag. This pressure-dominated drag reduction mechanism thus demonstrates a novel strategy for the drag reduction technology and the potential of unveiling the mysteries behind dolphin swimming.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.