Quantitative immunosensor for dibenz[a,h]anthracene on-site detection in oilfield chemicals based on computer-aided antibody

IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Jiaxun Li, Haifeng Chen, Yong Shu, Luming Jiang, Wei Gao, Hua Kuang, Chuanlai Xu, Lingling Guo
{"title":"Quantitative immunosensor for dibenz[a,h]anthracene on-site detection in oilfield chemicals based on computer-aided antibody","authors":"Jiaxun Li,&nbsp;Haifeng Chen,&nbsp;Yong Shu,&nbsp;Luming Jiang,&nbsp;Wei Gao,&nbsp;Hua Kuang,&nbsp;Chuanlai Xu,&nbsp;Lingling Guo","doi":"10.1007/s00604-025-07035-x","DOIUrl":null,"url":null,"abstract":"<div><p> A paper sensor, a gold nanoparticles-based lateral flow immunochromatographic assay (GNPs-LFIA), was successfully established for the rapid quantitative detection of dibenz[a,h]anthracene (DBA) in drilling fluids (DFs). Computational analysis was employed to rationally design a novel hapten to effectively expose the active site of DBA, resulting in the successful development of a monoclonal antibody with high sensitivity and specificity. The half-maximum inhibitory concentration was 5.814 ng/mL. Then, the GNPs-LFIA was established following the optimization of the extraction agent and method. The limit of detection for DF samples was 0.273 mg/kg. Recovery experiments showed a high level of consistency with the results obtained by high-performance liquid chromatography-fluorescence detection, which indicated that the established GNPs-LFIA offered exceptional accuracy and reliability. Consequently, this method is well-suited for the rapid screening and determination of DBA in oilfield chemicals and presents a technical solution to identify polycyclic aromatic hydrocarbons.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 4","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-07035-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A paper sensor, a gold nanoparticles-based lateral flow immunochromatographic assay (GNPs-LFIA), was successfully established for the rapid quantitative detection of dibenz[a,h]anthracene (DBA) in drilling fluids (DFs). Computational analysis was employed to rationally design a novel hapten to effectively expose the active site of DBA, resulting in the successful development of a monoclonal antibody with high sensitivity and specificity. The half-maximum inhibitory concentration was 5.814 ng/mL. Then, the GNPs-LFIA was established following the optimization of the extraction agent and method. The limit of detection for DF samples was 0.273 mg/kg. Recovery experiments showed a high level of consistency with the results obtained by high-performance liquid chromatography-fluorescence detection, which indicated that the established GNPs-LFIA offered exceptional accuracy and reliability. Consequently, this method is well-suited for the rapid screening and determination of DBA in oilfield chemicals and presents a technical solution to identify polycyclic aromatic hydrocarbons.

Graphical abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microchimica Acta
Microchimica Acta 化学-分析化学
CiteScore
9.80
自引率
5.30%
发文量
410
审稿时长
2.7 months
期刊介绍: As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信