\(\mathfrak {k}\)-Structure of Basic Representation of Affine Algebras

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Benedikt König
{"title":"\\(\\mathfrak {k}\\)-Structure of Basic Representation of Affine Algebras","authors":"Benedikt König","doi":"10.1007/s00220-025-05256-y","DOIUrl":null,"url":null,"abstract":"<div><p>This article presents a new relation between the basic representation of split real simply-laced affine Kac–Moody algebras and finite dimensional representations of its maximal compact subalgebra <span>\\(\\mathfrak {k}\\)</span>. We provide infinitely many <span>\\(\\mathfrak {k}\\)</span>-subrepresentations of the basic representation and we prove that these are all the finite dimensional <span>\\(\\mathfrak {k}\\)</span>-subrepresentations of the basic representation, such that the quotient of the basic representation by the subrepresentation is a finite dimensional representation of a certain parabolic algebra and of the maximal compact subalgebra. By this result we provide an infinite composition series with a cosocle filtration of the basic representation. Finally, we present examples of the results and applications to supergravity.\n</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05256-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05256-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a new relation between the basic representation of split real simply-laced affine Kac–Moody algebras and finite dimensional representations of its maximal compact subalgebra \(\mathfrak {k}\). We provide infinitely many \(\mathfrak {k}\)-subrepresentations of the basic representation and we prove that these are all the finite dimensional \(\mathfrak {k}\)-subrepresentations of the basic representation, such that the quotient of the basic representation by the subrepresentation is a finite dimensional representation of a certain parabolic algebra and of the maximal compact subalgebra. By this result we provide an infinite composition series with a cosocle filtration of the basic representation. Finally, we present examples of the results and applications to supergravity.

\(\mathfrak {k}\)仿射代数的基本表示结构
本文给出了分裂实简单仿射Kac-Moody代数的基本表示与其最大紧子代数\(\mathfrak {k}\)的有限维表示之间的新关系。我们给出了基本表示的无限多个\(\mathfrak {k}\) -子表示,并证明了这些都是基本表示的有限维\(\mathfrak {k}\) -子表示,使得基本表示与子表示的商是某抛物代数和最大紧子代数的有限维表示。利用这一结果,我们给出了一个无限复合级数,并对其基本表示进行了二次过滤。最后,我们给出了结果的例子及其在超重力中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信