Relation of curvature and torsion of weighted graph states with graph properties and its studies on a quantum computer

IF 2.9 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Kh. P. Gnatenko
{"title":"Relation of curvature and torsion of weighted graph states with graph properties and its studies on a quantum computer","authors":"Kh. P. Gnatenko","doi":"10.1140/epjp/s13360-025-06172-9","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum states of spin systems that can be represented with weighted graphs <i>G</i>(<i>V</i>, <i>E</i>) are studied. The velocity, curvature, and torsion of these states are examined. We find that the velocity of quantum evolution is determined by the sum of the weighted degrees of the nodes in the graph, constructed by raising to the second power the weights of graph <i>G</i>(<i>V</i>, <i>E</i>). The curvature depends on the sum of the weighted degrees of nodes in graphs constructed by raising the weights to the second and fourth powers. It also depends on the sum of the products of the weights of edges forming squares in graph <i>G</i>(<i>V</i>, <i>E</i>). The torsion is related to the sum of the weighted degrees of nodes in graphs constructed by raising the weights to the second, third, and fourth powers, as well as the sum of the products of the weights of edges in graph <i>G</i>(<i>V</i>, <i>E</i>) forming triangles <span>\\(S_3\\)</span>. Geometric properties of quantum graph states and the sum of the weighted degrees of nodes have been calculated with quantum programming on IBM’s quantum computer for the case of a spin chain.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-025-06172-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum states of spin systems that can be represented with weighted graphs G(VE) are studied. The velocity, curvature, and torsion of these states are examined. We find that the velocity of quantum evolution is determined by the sum of the weighted degrees of the nodes in the graph, constructed by raising to the second power the weights of graph G(VE). The curvature depends on the sum of the weighted degrees of nodes in graphs constructed by raising the weights to the second and fourth powers. It also depends on the sum of the products of the weights of edges forming squares in graph G(VE). The torsion is related to the sum of the weighted degrees of nodes in graphs constructed by raising the weights to the second, third, and fourth powers, as well as the sum of the products of the weights of edges in graph G(VE) forming triangles \(S_3\). Geometric properties of quantum graph states and the sum of the weighted degrees of nodes have been calculated with quantum programming on IBM’s quantum computer for the case of a spin chain.

Abstract Image

加权图态的曲率和扭转与图性质的关系及其在量子计算机上的研究
研究了可以用加权图G(V, E)表示的自旋系统的量子态。考察了这些状态的速度、曲率和扭转。我们发现量子演化的速度是由图G(V, E)中节点的加权度的和决定的,通过将图G(V, E)的权重提高到2次幂来构造。曲率取决于通过将权提高到2次和4次幂来构造图中节点的加权度的和。它还取决于图G(V, E)中形成正方形的边的权重乘积的和。扭转与通过将权重提高到二、三、四次方构建的图中节点的加权度的和以及图G(V, E)中形成三角形的边的权重乘积的和\(S_3\)有关。在IBM的量子计算机上对自旋链进行了量子编程,计算了量子图态的几何性质和节点加权度之和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal Plus
The European Physical Journal Plus PHYSICS, MULTIDISCIPLINARY-
CiteScore
5.40
自引率
8.80%
发文量
1150
审稿时长
4-8 weeks
期刊介绍: The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences. The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信