Lithium metal batteries using a lithiophilic oxidative interfacial layer on the 3D porous metal alloy media†

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-03-20 DOI:10.1039/D5RA00411J
Yusong Choi, Tae-Young Ahn, Sang-Hyeon Ha, Hyungu Kang, Won Jun Ahn, Jae-In Lee, Eun-ji Yoo and Jae-Seong Yeo
{"title":"Lithium metal batteries using a lithiophilic oxidative interfacial layer on the 3D porous metal alloy media†","authors":"Yusong Choi, Tae-Young Ahn, Sang-Hyeon Ha, Hyungu Kang, Won Jun Ahn, Jae-In Lee, Eun-ji Yoo and Jae-Seong Yeo","doi":"10.1039/D5RA00411J","DOIUrl":null,"url":null,"abstract":"<p >Various lithium-infused metal anodes based on pure nickel foam, recognised for their superior properties, have been developed for application in lithium batteries. However, pure nickel foam exhibits significant reactivity with molten lithium during the infusion processes, such as coating and impregnation. In this study, a high-performance and ultra-stable lithium-infused metal anode (LI-NAFA) is synthesised through a simple oxidation treatment of nickel–chromium–aluminium (Ni–Cr–Al) alloy foam (NAF) at 900 °C in an air atmosphere. This approach effectively mitigates the material's reactivity with molten lithium, thereby enhancing the stability of the resulting anode. A layer of several hundred nanometers is generated, which converts the NAF surface from lithiophobic to lithiophilic. Additionally, the layers formed during oxidation enhance the molten lithium stability. A full cell test employing LI-NAFA showed stability during the molten lithium infusion and cycle performance. A full cell with pure lithium was also tested for comparison. The notable enhancement in performance can be ascribed to the excellent electrical conductivity of the NAF and improved cycling stability of lithium ions facilitated by uniform charge distribution. Following cell discharge, the LI-NAFA showed no formation of lithium dendrites and a reduction in dead lithium. LI-NAFA holds great potential for developing high-performance lithium metal batteries because of its favourable fabrication process and excellent cycling stability.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 11","pages":" 8622-8629"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra00411j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra00411j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Various lithium-infused metal anodes based on pure nickel foam, recognised for their superior properties, have been developed for application in lithium batteries. However, pure nickel foam exhibits significant reactivity with molten lithium during the infusion processes, such as coating and impregnation. In this study, a high-performance and ultra-stable lithium-infused metal anode (LI-NAFA) is synthesised through a simple oxidation treatment of nickel–chromium–aluminium (Ni–Cr–Al) alloy foam (NAF) at 900 °C in an air atmosphere. This approach effectively mitigates the material's reactivity with molten lithium, thereby enhancing the stability of the resulting anode. A layer of several hundred nanometers is generated, which converts the NAF surface from lithiophobic to lithiophilic. Additionally, the layers formed during oxidation enhance the molten lithium stability. A full cell test employing LI-NAFA showed stability during the molten lithium infusion and cycle performance. A full cell with pure lithium was also tested for comparison. The notable enhancement in performance can be ascribed to the excellent electrical conductivity of the NAF and improved cycling stability of lithium ions facilitated by uniform charge distribution. Following cell discharge, the LI-NAFA showed no formation of lithium dendrites and a reduction in dead lithium. LI-NAFA holds great potential for developing high-performance lithium metal batteries because of its favourable fabrication process and excellent cycling stability.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信