Phosphorous-containing, amphiphilic ABB′ copolymers as siRNA nanocarriers with enhanced stability, reduced in vitro cytotoxicity, and efficient knockdown ability for the treatment of ocular diseases†

Philipp Weingarten, Molly Tzu-Yu Lin, Moritz Kränzlein, Agnes Fietz, Iris Kachel, José Hurst, Sven Schnichels and Friederike Adams
{"title":"Phosphorous-containing, amphiphilic ABB′ copolymers as siRNA nanocarriers with enhanced stability, reduced in vitro cytotoxicity, and efficient knockdown ability for the treatment of ocular diseases†","authors":"Philipp Weingarten, Molly Tzu-Yu Lin, Moritz Kränzlein, Agnes Fietz, Iris Kachel, José Hurst, Sven Schnichels and Friederike Adams","doi":"10.1039/D4LP00321G","DOIUrl":null,"url":null,"abstract":"<p >An RNA interference (RNAi) strategy using siRNA targeting NF-κB could counteract its harmful effects and provide therapeutic benefits for several ocular pathophysiologies. Rare-earth metal-mediated group-transfer polymerization was employed to synthesize precise AB and ABB′ block copolymers from 2-vinylpyridine and dialkyl vinylphosphonates (DAVP, alkyl = ethyl, allyl) as siRNA nanocarriers. Modifying the allyl group of the vinylphosphonate unit transformed these polymers into cationic, amphiphilic copolymers. All polymers showed maximum siRNA encapsulation at a low N/P ratio of 2. The cationic unit distribution along the PDAVP chain influences the encapsulation capacity and the stability of the polyplexes. A less dense distribution of cationic units led to increased amounts of free siRNA, even at higher N/P ratios, but to a better stability of the polyplexes. Diffused calcein signals observed from cells treated with ABB′/siRNA polyplexes revealed an endosomal escape capability while maintaining excellent <em>in vitro</em> cell viability. Ocular cell lines transfected with these polyplexes demonstrated a superior NF-κB/RelA gene silencing efficiency. This study highlights the potential of phosphorous-containing, amphiphilic polymers as nucleic acid carriers with enhanced stability, excellent cytotoxicity profiles, and efficient knockdown ability.</p>","PeriodicalId":101139,"journal":{"name":"RSC Applied Polymers","volume":" 2","pages":" 381-390"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lp/d4lp00321g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Polymers","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lp/d4lp00321g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An RNA interference (RNAi) strategy using siRNA targeting NF-κB could counteract its harmful effects and provide therapeutic benefits for several ocular pathophysiologies. Rare-earth metal-mediated group-transfer polymerization was employed to synthesize precise AB and ABB′ block copolymers from 2-vinylpyridine and dialkyl vinylphosphonates (DAVP, alkyl = ethyl, allyl) as siRNA nanocarriers. Modifying the allyl group of the vinylphosphonate unit transformed these polymers into cationic, amphiphilic copolymers. All polymers showed maximum siRNA encapsulation at a low N/P ratio of 2. The cationic unit distribution along the PDAVP chain influences the encapsulation capacity and the stability of the polyplexes. A less dense distribution of cationic units led to increased amounts of free siRNA, even at higher N/P ratios, but to a better stability of the polyplexes. Diffused calcein signals observed from cells treated with ABB′/siRNA polyplexes revealed an endosomal escape capability while maintaining excellent in vitro cell viability. Ocular cell lines transfected with these polyplexes demonstrated a superior NF-κB/RelA gene silencing efficiency. This study highlights the potential of phosphorous-containing, amphiphilic polymers as nucleic acid carriers with enhanced stability, excellent cytotoxicity profiles, and efficient knockdown ability.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信