Triazolinedione-functionalized isoprene rubber composites with self-adhesion via cross-linking with zinc dimethacrylate†

Kyohei Kotani, Yuji Kitamura, Katsuhiko Tsunoda, Akira Takahashi and Hideyuki Otsuka
{"title":"Triazolinedione-functionalized isoprene rubber composites with self-adhesion via cross-linking with zinc dimethacrylate†","authors":"Kyohei Kotani, Yuji Kitamura, Katsuhiko Tsunoda, Akira Takahashi and Hideyuki Otsuka","doi":"10.1039/D4LP00331D","DOIUrl":null,"url":null,"abstract":"<p >We report a novel system for the direct adhesion of cross-linked rubbers based on the introduction of triazolinedione (TAD)-derived urazole moieties into <em>cis</em>-1,4-polyisoprene (PI) followed by the addition of zinc dimethacrylate (ZDMA) with the aim of forming dissociative ionic cross-links. The modification of PI is achieved by a TAD-based click reaction using 4-phenyl-1,2,4-triazoline-3,5-dione (PhTAD). The formation of cross-linking <em>via</em> the TAD units and ZDMA is demonstrated by the increase in the elastic-torque curves of the resulting rubber composites at elevated temperature. The addition of the radical-trapping agent <em>N</em>-(1,3-dimethylbutyl)-<em>N</em>′-phenyl-<em>p</em>-phenylenediamine to the cross-linking system suppresses the increase in its elastic torque, indicating that cross-linking between the TAD units and ZDMA proceeds by a radical mechanism. This mechanism is supported by the fact that the use of either zinc chloride or zinc acetate instead of ZDMA did not show an increase in the elastic torque, excluding the possibility of coordination cross-linking between TAD units and zinc centres. The obtained TAD–ZDMA cross-linked rubbers show unique temperature dependence in dynamic mechanical analysis (DMA), reflecting the dissociation of the ionic cross-linking at elevated temperatures. Strain–sweep DMA tests showed a typical Payne effect with an increasing amount of TAD units in the PI, supporting the formation of ZDMA–ZDMA filler interactions. Tensile tests revealed that the fracture energies of the TAD-PI/ZDMA composites are comparable to those of samples prepared using a peroxide-based curing system, and a tensile strength of up to 18.2 MPa at 525% elongation was achieved when 3.1 mol% of TAD was incorporated into the PI with 40 phr of ZDMA. A direct adhesion is demonstrated using T-peel tests, in which the adhesion-peeling force reached up to 6.55 N mm<small><sup>−1</sup></small> when 4.3 mol% of TAD was incorporated into the PI with 40 phr of ZDMA. The maximum peeling force shows a good correlation with the difference between the <em>E</em>′ values at 25 °C and 145 °C in the DMA tests, except in the case of the sample with a too-high degree of cross-linking, indicating that the degree of dissociative cross-linking is the main factor determining the adhesion strength in the TAD–ZDMA cross-linking system.</p>","PeriodicalId":101139,"journal":{"name":"RSC Applied Polymers","volume":" 2","pages":" 347-360"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lp/d4lp00331d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Polymers","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lp/d4lp00331d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We report a novel system for the direct adhesion of cross-linked rubbers based on the introduction of triazolinedione (TAD)-derived urazole moieties into cis-1,4-polyisoprene (PI) followed by the addition of zinc dimethacrylate (ZDMA) with the aim of forming dissociative ionic cross-links. The modification of PI is achieved by a TAD-based click reaction using 4-phenyl-1,2,4-triazoline-3,5-dione (PhTAD). The formation of cross-linking via the TAD units and ZDMA is demonstrated by the increase in the elastic-torque curves of the resulting rubber composites at elevated temperature. The addition of the radical-trapping agent N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine to the cross-linking system suppresses the increase in its elastic torque, indicating that cross-linking between the TAD units and ZDMA proceeds by a radical mechanism. This mechanism is supported by the fact that the use of either zinc chloride or zinc acetate instead of ZDMA did not show an increase in the elastic torque, excluding the possibility of coordination cross-linking between TAD units and zinc centres. The obtained TAD–ZDMA cross-linked rubbers show unique temperature dependence in dynamic mechanical analysis (DMA), reflecting the dissociation of the ionic cross-linking at elevated temperatures. Strain–sweep DMA tests showed a typical Payne effect with an increasing amount of TAD units in the PI, supporting the formation of ZDMA–ZDMA filler interactions. Tensile tests revealed that the fracture energies of the TAD-PI/ZDMA composites are comparable to those of samples prepared using a peroxide-based curing system, and a tensile strength of up to 18.2 MPa at 525% elongation was achieved when 3.1 mol% of TAD was incorporated into the PI with 40 phr of ZDMA. A direct adhesion is demonstrated using T-peel tests, in which the adhesion-peeling force reached up to 6.55 N mm−1 when 4.3 mol% of TAD was incorporated into the PI with 40 phr of ZDMA. The maximum peeling force shows a good correlation with the difference between the E′ values at 25 °C and 145 °C in the DMA tests, except in the case of the sample with a too-high degree of cross-linking, indicating that the degree of dissociative cross-linking is the main factor determining the adhesion strength in the TAD–ZDMA cross-linking system.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信