Tuning solvent strength can fractionate PVC into ultra-low molecular weight material with low dispersity†

Ali Al Alshaikh, Jaewoo Choi, Feranmi V. Olowookere, Caira McClairen, Owen G. Lubic, Pravin S. Shinde, C. Heath Turner and Jason E. Bara
{"title":"Tuning solvent strength can fractionate PVC into ultra-low molecular weight material with low dispersity†","authors":"Ali Al Alshaikh, Jaewoo Choi, Feranmi V. Olowookere, Caira McClairen, Owen G. Lubic, Pravin S. Shinde, C. Heath Turner and Jason E. Bara","doi":"10.1039/D4LP00313F","DOIUrl":null,"url":null,"abstract":"<p >The drive towards a circular economy in plastic materials has become a worldwide goal. It is apparent that conventional recycling alone falls well short of achieving circularity in plastic materials due to the complex formulations of commercial products. Poly(vinyl chloride) (PVC) is a post-consumer plastic that is especially challenging to recycle mechanically. However, compared to other commodity plastics, PVC is potentially well-suited for chemical recycling, especially <em>via</em> dissolution processes that selectively remove additives. Solvent-based recycling of PVC would circumvent thermomechanical processes that cause degradation of the polymer backbone. Yet, solvent-based recycling has its own set of considerations. Recycling a “Katamari” of mixed products of unknown origins (and potentially widely varying molecular weight distributions) might yield a purified PVC product that is of low value and/or without obvious utility. Thus, solvent fractionation of the feed into two or more products of relatively narrow molecular weight distributions may be required instead of bulk dissolution of the entire mass of polymer. In this work, we demonstrate solvent-based fractionation of PVC as both single-step and sequential processes. Two solvent systems were considered: acetone–methanol and tetrahydrofuran–methanol. The content of methanol in the solvent systems was varied to adjust the overall “strength” of the solvent system, thus controlling the molecular weight of the recovered soluble and insoluble fractions of PVC. Sequential fractionation proved capable of producing PVC fractions with dispersities (<em>Đ</em>) as low as 1.14. Further, sequential fractionation of commercial PVC, containing additives, was highly promising for removing additives from the bulk (76.9%) of recovered PVC.</p>","PeriodicalId":101139,"journal":{"name":"RSC Applied Polymers","volume":" 2","pages":" 336-346"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lp/d4lp00313f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Polymers","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lp/d4lp00313f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The drive towards a circular economy in plastic materials has become a worldwide goal. It is apparent that conventional recycling alone falls well short of achieving circularity in plastic materials due to the complex formulations of commercial products. Poly(vinyl chloride) (PVC) is a post-consumer plastic that is especially challenging to recycle mechanically. However, compared to other commodity plastics, PVC is potentially well-suited for chemical recycling, especially via dissolution processes that selectively remove additives. Solvent-based recycling of PVC would circumvent thermomechanical processes that cause degradation of the polymer backbone. Yet, solvent-based recycling has its own set of considerations. Recycling a “Katamari” of mixed products of unknown origins (and potentially widely varying molecular weight distributions) might yield a purified PVC product that is of low value and/or without obvious utility. Thus, solvent fractionation of the feed into two or more products of relatively narrow molecular weight distributions may be required instead of bulk dissolution of the entire mass of polymer. In this work, we demonstrate solvent-based fractionation of PVC as both single-step and sequential processes. Two solvent systems were considered: acetone–methanol and tetrahydrofuran–methanol. The content of methanol in the solvent systems was varied to adjust the overall “strength” of the solvent system, thus controlling the molecular weight of the recovered soluble and insoluble fractions of PVC. Sequential fractionation proved capable of producing PVC fractions with dispersities (Đ) as low as 1.14. Further, sequential fractionation of commercial PVC, containing additives, was highly promising for removing additives from the bulk (76.9%) of recovered PVC.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信