Investigation of a deep learning-based waste recovery framework for sustainability and a clean environment using IoT

M. Arun
{"title":"Investigation of a deep learning-based waste recovery framework for sustainability and a clean environment using IoT","authors":"M. Arun","doi":"10.1039/D4FB00340C","DOIUrl":null,"url":null,"abstract":"<p >The growing concern over environmental sustainability has prompted the development of various technologies for waste material recovery and management. One promising approach involves leveraging Internet of Things (IoT) platforms combined with deep learning (DL) models to enhance the efficiency and effectiveness of waste recovery systems. Due to manual processes and limited automation, waste recovery methods face challenges such as inadequate waste sorting, high energy consumption, and low recovery rates. These methods often struggle to scale effectively, leading to inefficiencies in waste management and sustainability efforts. The proposed framework, Waste Material Recovery using Deep Learning (WMR-DL), aims to address these issues by integrating IoT sensors for real-time data collection and deep learning algorithms for automated waste identification and classification. This system improves sorting accuracy, reduces human intervention, and enhances the recovery of valuable materials from waste. The IoT platform allows for continuous monitoring, while deep learning models analyze data to predict and optimize the waste recovery process. The proposed method can be applied in various waste management sectors, such as recycling plants, e-waste recovery, and municipal waste systems. The system supports intelligent decision-making using IoT-enabled devices and DL models, optimizing real-time waste sorting and material recovery processes. Preliminary findings show that the WMR-DL framework improves recovery efficiency by up to 30%, with reduced operational costs and better resource management. This approach promotes sustainability and significantly reduces the environmental impact of waste disposal systems, contributing to a cleaner and greener environment.</p>","PeriodicalId":101198,"journal":{"name":"Sustainable Food Technology","volume":" 2","pages":" 599-611"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/fb/d4fb00340c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Food Technology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/fb/d4fb00340c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The growing concern over environmental sustainability has prompted the development of various technologies for waste material recovery and management. One promising approach involves leveraging Internet of Things (IoT) platforms combined with deep learning (DL) models to enhance the efficiency and effectiveness of waste recovery systems. Due to manual processes and limited automation, waste recovery methods face challenges such as inadequate waste sorting, high energy consumption, and low recovery rates. These methods often struggle to scale effectively, leading to inefficiencies in waste management and sustainability efforts. The proposed framework, Waste Material Recovery using Deep Learning (WMR-DL), aims to address these issues by integrating IoT sensors for real-time data collection and deep learning algorithms for automated waste identification and classification. This system improves sorting accuracy, reduces human intervention, and enhances the recovery of valuable materials from waste. The IoT platform allows for continuous monitoring, while deep learning models analyze data to predict and optimize the waste recovery process. The proposed method can be applied in various waste management sectors, such as recycling plants, e-waste recovery, and municipal waste systems. The system supports intelligent decision-making using IoT-enabled devices and DL models, optimizing real-time waste sorting and material recovery processes. Preliminary findings show that the WMR-DL framework improves recovery efficiency by up to 30%, with reduced operational costs and better resource management. This approach promotes sustainability and significantly reduces the environmental impact of waste disposal systems, contributing to a cleaner and greener environment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信