The Radial Flux HTS Synchronous Motor Stator Windings Comparison for Electrified Aircraft Applications

IF 1.7 3区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhishu Qiu;Aleksandr Shchukin;Muhammad Bin Younas;Hengpei Liao;Weijia Yuan;Min Zhang
{"title":"The Radial Flux HTS Synchronous Motor Stator Windings Comparison for Electrified Aircraft Applications","authors":"Zhishu Qiu;Aleksandr Shchukin;Muhammad Bin Younas;Hengpei Liao;Weijia Yuan;Min Zhang","doi":"10.1109/TASC.2025.3545412","DOIUrl":null,"url":null,"abstract":"Electrified aircraft propulsion systems could be a key solution for achieving zero-emission aviation. The need for efficient multi-megawatt motors with high power density makes superconducting motors a promising solution. This study investigates the performance of radial flux high-temperature superconductor (HTS) synchronous motors for electrified aircraft applications, emphasizing the impact of stator windings on power density and losses. In this study, two motor benchmarks of 450 kW and 1 MW are proposed, the impact of an iron core on the stator structure is analyzed, and various stator windings including copper/aluminium Litz wires and HTS coils are compared regarding stator AC loss as well as machine power-to-weight ratio (PTW). The result indicates that air-cored stators are preferred due to their lower weight and reduced losses, particularly in cryogenic conditions. Meanwhile, HTS coils outperform Litz wires at lower cryogenic temperatures (40 K) in terms of machine PTW. At 77 K, however, aluminium Litz wires have an advantage over HTS designs for smaller machines. This study concludes that HTS stators with an air-cored structure can be a desired topology for the future high PTW motor design required in low-emission electrified aviation propulsion systems, especially at low cryogenic temperatures achieved with liquid hydrogen (<inline-formula><tex-math>$\\text{LH}_{2}$</tex-math></inline-formula>).","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 5","pages":"1-6"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10902618/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Electrified aircraft propulsion systems could be a key solution for achieving zero-emission aviation. The need for efficient multi-megawatt motors with high power density makes superconducting motors a promising solution. This study investigates the performance of radial flux high-temperature superconductor (HTS) synchronous motors for electrified aircraft applications, emphasizing the impact of stator windings on power density and losses. In this study, two motor benchmarks of 450 kW and 1 MW are proposed, the impact of an iron core on the stator structure is analyzed, and various stator windings including copper/aluminium Litz wires and HTS coils are compared regarding stator AC loss as well as machine power-to-weight ratio (PTW). The result indicates that air-cored stators are preferred due to their lower weight and reduced losses, particularly in cryogenic conditions. Meanwhile, HTS coils outperform Litz wires at lower cryogenic temperatures (40 K) in terms of machine PTW. At 77 K, however, aluminium Litz wires have an advantage over HTS designs for smaller machines. This study concludes that HTS stators with an air-cored structure can be a desired topology for the future high PTW motor design required in low-emission electrified aviation propulsion systems, especially at low cryogenic temperatures achieved with liquid hydrogen ($\text{LH}_{2}$).
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Applied Superconductivity
IEEE Transactions on Applied Superconductivity 工程技术-工程:电子与电气
CiteScore
3.50
自引率
33.30%
发文量
650
审稿时长
2.3 months
期刊介绍: IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信