64-Gbit/s Optical-Domain Encrypted Chaotic Secure Communication Over 110-km Commercial Fiber

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jiacheng Feng;Lin Jiang;Lianshan Yan;Anlin Yi;Wei Pan
{"title":"64-Gbit/s Optical-Domain Encrypted Chaotic Secure Communication Over 110-km Commercial Fiber","authors":"Jiacheng Feng;Lin Jiang;Lianshan Yan;Anlin Yi;Wei Pan","doi":"10.1109/LPT.2025.3550567","DOIUrl":null,"url":null,"abstract":"As a physical layer secure transmission scheme, optical chaotic communication has garnered significant attention for its notable advantages in transmission rate and transmission distance. However, issues like fiber link damage and hardware mismatches between transmitter and receiver hinder its advancement to higher speeds and longer distance. In this letter, we experimentally demonstrate chaotic secure communication of a 64 Gbit/s PAM-4 signal transmitted over 250km using a chaotic optoelectronic oscillator (OEO) system, achieving record-breaking capacity-distance products of 16000-Gbit/s•km in optical-domain encrypted chaotic secure communication using single-core SMF. In our laboratory validation, we utilized ultra-low-loss (~0.155dB/km), large-effective-area (<inline-formula> <tex-math>$\\sim 150~\\mu $ </tex-math></inline-formula>m2) SMF to reduce link losses and enhance OSNR at the receiver. A multi-span dispersion-managed fiber link, along with decision-directed least-mean square (DD-LMS) algorithm, is employed to address amplitude distortion caused by the fiber, modulation, and synchronization mismatches. Furthermore, we also successfully demonstrated in a 110-km deployed commercial optical fiber in Chengdu, China, presenting a cost-effective approach to strengthening commercial optical network security.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"37 7","pages":"425-428"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10924242/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

As a physical layer secure transmission scheme, optical chaotic communication has garnered significant attention for its notable advantages in transmission rate and transmission distance. However, issues like fiber link damage and hardware mismatches between transmitter and receiver hinder its advancement to higher speeds and longer distance. In this letter, we experimentally demonstrate chaotic secure communication of a 64 Gbit/s PAM-4 signal transmitted over 250km using a chaotic optoelectronic oscillator (OEO) system, achieving record-breaking capacity-distance products of 16000-Gbit/s•km in optical-domain encrypted chaotic secure communication using single-core SMF. In our laboratory validation, we utilized ultra-low-loss (~0.155dB/km), large-effective-area ( $\sim 150~\mu $ m2) SMF to reduce link losses and enhance OSNR at the receiver. A multi-span dispersion-managed fiber link, along with decision-directed least-mean square (DD-LMS) algorithm, is employed to address amplitude distortion caused by the fiber, modulation, and synchronization mismatches. Furthermore, we also successfully demonstrated in a 110-km deployed commercial optical fiber in Chengdu, China, presenting a cost-effective approach to strengthening commercial optical network security.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Photonics Technology Letters
IEEE Photonics Technology Letters 工程技术-工程:电子与电气
CiteScore
5.00
自引率
3.80%
发文量
404
审稿时长
2.0 months
期刊介绍: IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信