High Sensitivity Temperature Sensing Based on Intermodal Coupling of a Tapered Multicore Fiber

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Ying Chen;Wei Zhang;Yubo Liu;Yuxuan Qi;Jiacheng Lv;Zhuoran Yu;Hailong Liu;Jiasheng Ni;Yanjie Zhao
{"title":"High Sensitivity Temperature Sensing Based on Intermodal Coupling of a Tapered Multicore Fiber","authors":"Ying Chen;Wei Zhang;Yubo Liu;Yuxuan Qi;Jiacheng Lv;Zhuoran Yu;Hailong Liu;Jiasheng Ni;Yanjie Zhao","doi":"10.1109/LPT.2025.3549906","DOIUrl":null,"url":null,"abstract":"A high-sensitivity fiber-optic temperature sensor consisting of a cascaded structure of multimode fiber (MMF), tapered seven-core fiber (TSCF) and multimode fiber (MMF) is proposed. The characteristics of the MMF-TSCF-MMF structure, referred to as the MTSCM, are analyzed and simulated using the beam propagation method (BPM) both before and after the seven-core fiber (SCF) is tapered. Simulations indicate a fiber Mach-Zehnder interferometer (MZI) is formed within the structure. Both simulation and experimental results demonstrate that the MTSCM structure exhibits a stronger evanescent field and more surrounding core and cladding modes. A sensitivity of −760 pm/°C is achieved by using MTSCM structure sensor in temperature measurement, significantly higher than that of the MSCM structure sensor. The proposed sensor holds a great potential for marine environment detection.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"37 7","pages":"417-420"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10921694/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A high-sensitivity fiber-optic temperature sensor consisting of a cascaded structure of multimode fiber (MMF), tapered seven-core fiber (TSCF) and multimode fiber (MMF) is proposed. The characteristics of the MMF-TSCF-MMF structure, referred to as the MTSCM, are analyzed and simulated using the beam propagation method (BPM) both before and after the seven-core fiber (SCF) is tapered. Simulations indicate a fiber Mach-Zehnder interferometer (MZI) is formed within the structure. Both simulation and experimental results demonstrate that the MTSCM structure exhibits a stronger evanescent field and more surrounding core and cladding modes. A sensitivity of −760 pm/°C is achieved by using MTSCM structure sensor in temperature measurement, significantly higher than that of the MSCM structure sensor. The proposed sensor holds a great potential for marine environment detection.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Photonics Technology Letters
IEEE Photonics Technology Letters 工程技术-工程:电子与电气
CiteScore
5.00
自引率
3.80%
发文量
404
审稿时长
2.0 months
期刊介绍: IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信