A Polarization-Insensitive 3 dB Power Splitter Based On Inverse-Designed Subwavelength Pixelated Structure

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Lei Zhang;Hongzhe Ouyang;Yaxin Yu;Jiao Zhang;Min Zhu;Shengbao Wu;Jinbiao Xiao
{"title":"A Polarization-Insensitive 3 dB Power Splitter Based On Inverse-Designed Subwavelength Pixelated Structure","authors":"Lei Zhang;Hongzhe Ouyang;Yaxin Yu;Jiao Zhang;Min Zhu;Shengbao Wu;Jinbiao Xiao","doi":"10.1109/LPT.2025.3550542","DOIUrl":null,"url":null,"abstract":"The polarization-independent power splitters (PIPSs) are essential for enabling efficient integration in photonic circuits. In this letter, we propose and experimentally demonstrate an ultra-compact, broadband 3 dB PIPS, whose design is based on a sub-wavelength pixelated structure with a footprint of <inline-formula> <tex-math>$2.5\\times \\,\\, 1.5~\\mu $ </tex-math></inline-formula>m2. The initial pixelated structure is carefully designed to enhance algorithm robustness of the optimization process, thereby improving efficiency and avoiding local optima. The experimental results show that the insertion loss of both TE0 and TM0 is lower than 1.5 dB within the wavelength range of 1480-1580 nm, while the beam splitting ratio between the two output ports remains above 75%. In addition, the fabrication tolerance of the device is examined to ensure low insertion loss and reflection loss. This ultra-compact on-chip device demonstrates significant potential for advancing high-density integration in optical circuits.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"37 7","pages":"433-436"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10924231/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The polarization-independent power splitters (PIPSs) are essential for enabling efficient integration in photonic circuits. In this letter, we propose and experimentally demonstrate an ultra-compact, broadband 3 dB PIPS, whose design is based on a sub-wavelength pixelated structure with a footprint of $2.5\times \,\, 1.5~\mu $ m2. The initial pixelated structure is carefully designed to enhance algorithm robustness of the optimization process, thereby improving efficiency and avoiding local optima. The experimental results show that the insertion loss of both TE0 and TM0 is lower than 1.5 dB within the wavelength range of 1480-1580 nm, while the beam splitting ratio between the two output ports remains above 75%. In addition, the fabrication tolerance of the device is examined to ensure low insertion loss and reflection loss. This ultra-compact on-chip device demonstrates significant potential for advancing high-density integration in optical circuits.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Photonics Technology Letters
IEEE Photonics Technology Letters 工程技术-工程:电子与电气
CiteScore
5.00
自引率
3.80%
发文量
404
审稿时长
2.0 months
期刊介绍: IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信