{"title":"Chlorogenic acid attenuates 5-fluorouracil-induced intestinal mucositis in mice through SIRT1 signaling-mediated oxidative stress and inflammatory pathways","authors":"Che-Hsuan Lin , Wen-Ping Jiang , Nanae Itokazu , Guan-Jhong Huang","doi":"10.1016/j.biopha.2025.117982","DOIUrl":null,"url":null,"abstract":"<div><div>Mucositis, a common side effect of the chemotherapeutic drug 5-Fluorouracil (5-FU), causes severe and aggravating effects on mucosal cells in the oral cavity and intestine. This study in mice aimed to assess the antioxidant, anti-inflammatory, and mucosal protective properties of chlorogenic acid in mitigating 5-FU-induced intestinal mucositis. To investigate these potential protective effects, we developed a mouse model by administering an initial intraperitoneal (i.p.) injection of 5-FU, followed by daily i.p. injections of chlorogenic acid (10 and 20 mg/kg) for 10 consecutive days. Chlorogenic acid mitigated intestinal histopathological damage, reduced proinflammatory mediators and malondialdehyde (MDA) levels, and increased the glutathione (GSH) level by 5-FU. Chlorogenic acid treatment led to a significant reduction in the expression of inflammation-related proteins decreased oxidative stress-related proteins and, attenuated the expression of apoptosis and autophagy-related proteins in small intestinal tissues. Additional investigations are necessary to verify our findings and enhance our comprehension of how SIRT1 inhibition (EX-527) counteracts the anti-inflammatory effects of chlorogenic acid in intestinal tissues. In conclusion, our mice study has shown that chlorogenic acid exerts its protective effects on 5-FU-induced intestinal tissue damage, by reducing oxidative stress and inflammation through the modulation of multiple signaling pathways, including the TLR4/NF-κB/MAPK, AMPK/ SIRT1, and PI3K/AKT axis. These findings highlight the potential of chlorogenic acid as a therapeutic agent for mucositis, given its anti-inflammatory and antioxidant properties.</div></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":"186 ","pages":"Article 117982"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332225001763","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mucositis, a common side effect of the chemotherapeutic drug 5-Fluorouracil (5-FU), causes severe and aggravating effects on mucosal cells in the oral cavity and intestine. This study in mice aimed to assess the antioxidant, anti-inflammatory, and mucosal protective properties of chlorogenic acid in mitigating 5-FU-induced intestinal mucositis. To investigate these potential protective effects, we developed a mouse model by administering an initial intraperitoneal (i.p.) injection of 5-FU, followed by daily i.p. injections of chlorogenic acid (10 and 20 mg/kg) for 10 consecutive days. Chlorogenic acid mitigated intestinal histopathological damage, reduced proinflammatory mediators and malondialdehyde (MDA) levels, and increased the glutathione (GSH) level by 5-FU. Chlorogenic acid treatment led to a significant reduction in the expression of inflammation-related proteins decreased oxidative stress-related proteins and, attenuated the expression of apoptosis and autophagy-related proteins in small intestinal tissues. Additional investigations are necessary to verify our findings and enhance our comprehension of how SIRT1 inhibition (EX-527) counteracts the anti-inflammatory effects of chlorogenic acid in intestinal tissues. In conclusion, our mice study has shown that chlorogenic acid exerts its protective effects on 5-FU-induced intestinal tissue damage, by reducing oxidative stress and inflammation through the modulation of multiple signaling pathways, including the TLR4/NF-κB/MAPK, AMPK/ SIRT1, and PI3K/AKT axis. These findings highlight the potential of chlorogenic acid as a therapeutic agent for mucositis, given its anti-inflammatory and antioxidant properties.
期刊介绍:
Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.