Novel one-pot recovery and in-situ crystallization of polyhydroxybutyrate and hydroxyapatite/tricalcium phosphate biocomposite microparticles with comparative life cycle assessment
{"title":"Novel one-pot recovery and in-situ crystallization of polyhydroxybutyrate and hydroxyapatite/tricalcium phosphate biocomposite microparticles with comparative life cycle assessment","authors":"Anuchan Panaksri , Pasin Kuncharin , Purin Neerawong , Taranuch Panthong , Thanadol Thanakornkriengkrai , Sani Boonyagul , Woradej Pichaiaukrit , Sutee Wangtueai , Nuankanya Sathirapongsasuti , Kittisak Jantanasakulwong , Pornchai Rachtanapun , Patnarin Worajittiphon , Phavit Wongsirichot , Nuttapol Tanadchangsaeng","doi":"10.1016/j.polymdegradstab.2025.111321","DOIUrl":null,"url":null,"abstract":"<div><div>Formation of polyhydroxybutyrate (PHB) biopolymer composites with bioceramics such as hydroxyapatite (HA) and tricalcium phosphate (TCP) is essential in achieving mechanical properties needed for novel bone tissue engineering using PHB. However, composite microparticle synthesis typically requires multiple steps, including 1) PHB recovery and purification, 2) dispersion of HA and TCP particles in the melt or solvent-dissolved polymer liquid, and 3) micro-droplet drying. In this study, PHB/HA/TCP composite microparticles were successfully produced by one-pot biosynthesis. This was achieved during acid-based PHB recovery by utilizing the crystallization of native-amorphous granule PHB within <em>Cupriavidus necator</em>. In-situ PHB crystallization was successfully monitored by real-time attenuated total reflection-Fourier transform infrared (ATR-FTIR). Additionally, the in-situ crystallization behavior was elucidated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The most suitable conditions for synthesis of the PHB/HA/TCP composite were pH 2, and 20 min of reaction time, which capitalizes on the amorphous nature of the in-situ PHB during recovery. The HA and TCP did not function as nucleating agents, thereby not impacting accumulation and homogeneity. This allows HA/TCP bioceramics to be inserted into the polymer during the PHB recovery period, and after the crystallization step is completed, the composite microparticles could facilely form. The crystallization mechanism was found to be sporadic, and the morphology was a disc with two dimensions. Additionally, the life cycle assessment (LCA) revealed that the one-pot method reduced global warming potential (GWP) emissions by 50% and non-renewable energy use (NREU) by a comparable margin, compared to the conventional multi-step method for HA/TCP (20:80) production. These findings emphasize the environmental advantages of the one-pot approach alongside its cost and process efficiency. The demonstrated one-pot synthesis method would allow for more streamlined and cost-effective production of PHB/HA/TCP biocomposites. The materials produced and insights gained will be beneficial for future development of biopolymer composite processing and biomedical applications.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"237 ","pages":"Article 111321"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014139102500151X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Formation of polyhydroxybutyrate (PHB) biopolymer composites with bioceramics such as hydroxyapatite (HA) and tricalcium phosphate (TCP) is essential in achieving mechanical properties needed for novel bone tissue engineering using PHB. However, composite microparticle synthesis typically requires multiple steps, including 1) PHB recovery and purification, 2) dispersion of HA and TCP particles in the melt or solvent-dissolved polymer liquid, and 3) micro-droplet drying. In this study, PHB/HA/TCP composite microparticles were successfully produced by one-pot biosynthesis. This was achieved during acid-based PHB recovery by utilizing the crystallization of native-amorphous granule PHB within Cupriavidus necator. In-situ PHB crystallization was successfully monitored by real-time attenuated total reflection-Fourier transform infrared (ATR-FTIR). Additionally, the in-situ crystallization behavior was elucidated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The most suitable conditions for synthesis of the PHB/HA/TCP composite were pH 2, and 20 min of reaction time, which capitalizes on the amorphous nature of the in-situ PHB during recovery. The HA and TCP did not function as nucleating agents, thereby not impacting accumulation and homogeneity. This allows HA/TCP bioceramics to be inserted into the polymer during the PHB recovery period, and after the crystallization step is completed, the composite microparticles could facilely form. The crystallization mechanism was found to be sporadic, and the morphology was a disc with two dimensions. Additionally, the life cycle assessment (LCA) revealed that the one-pot method reduced global warming potential (GWP) emissions by 50% and non-renewable energy use (NREU) by a comparable margin, compared to the conventional multi-step method for HA/TCP (20:80) production. These findings emphasize the environmental advantages of the one-pot approach alongside its cost and process efficiency. The demonstrated one-pot synthesis method would allow for more streamlined and cost-effective production of PHB/HA/TCP biocomposites. The materials produced and insights gained will be beneficial for future development of biopolymer composite processing and biomedical applications.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.