TCAD-based evaluations of a high-performance, low-power dielectric modulated BioTFET with dopingless tunneling junctions

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
Iman Chahardah Cherik , Saeed Mohammadi , Mohamad Reza Bayatiani , Fatemeh Seif
{"title":"TCAD-based evaluations of a high-performance, low-power dielectric modulated BioTFET with dopingless tunneling junctions","authors":"Iman Chahardah Cherik ,&nbsp;Saeed Mohammadi ,&nbsp;Mohamad Reza Bayatiani ,&nbsp;Fatemeh Seif","doi":"10.1016/j.micrna.2025.208146","DOIUrl":null,"url":null,"abstract":"<div><div>This article introduces a biosensor that utilizes a dopingless Ge/Si heterostructure for more efficient detecting the intended biomolecules. In order to convert the intrinsic germanium-based semiconductor within our bioTFET (biological tunneling field-effect transistor) into a P<sup>+</sup> region, we have surrounded the source with two heavily-doped silicon layers. This addresses challenges such as silicide formation and parasitic metal-to-source tunneling, which are commonly found in charge plasma-based devices. In the drain region, we have incorporated N<sup>+</sup> doping instead of using inductive metal, resulting in improved AC performance. To verify our findings, we have used a calibrated device simulator and proposed a detailed fabrication process for our bioTFET. In order to assess the functionality of our biosensor, we have executed a series of simulations to quantify its performance metrics, including the sensitivity of drain current and subthreshold swing. Due to our device's optimal design, we achieved ideal parameters such as <span><math><mrow><msub><mi>S</mi><msub><mi>I</mi><mi>D</mi></msub></msub></mrow></math></span> = 6.15 × 10<sup>6</sup>,and <span><math><mrow><msub><mi>S</mi><msub><mrow><mi>S</mi><mi>S</mi></mrow><mrow><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></msub></mrow></math></span> = 0.92 at <em>V</em><sub>GS</sub> = 0.7 V.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"203 ","pages":"Article 208146"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325000755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces a biosensor that utilizes a dopingless Ge/Si heterostructure for more efficient detecting the intended biomolecules. In order to convert the intrinsic germanium-based semiconductor within our bioTFET (biological tunneling field-effect transistor) into a P+ region, we have surrounded the source with two heavily-doped silicon layers. This addresses challenges such as silicide formation and parasitic metal-to-source tunneling, which are commonly found in charge plasma-based devices. In the drain region, we have incorporated N+ doping instead of using inductive metal, resulting in improved AC performance. To verify our findings, we have used a calibrated device simulator and proposed a detailed fabrication process for our bioTFET. In order to assess the functionality of our biosensor, we have executed a series of simulations to quantify its performance metrics, including the sensitivity of drain current and subthreshold swing. Due to our device's optimal design, we achieved ideal parameters such as SID = 6.15 × 106,and SSSavg = 0.92 at VGS = 0.7 V.
具有无掺杂隧道结的高性能、低功耗电介质调制生物晶体管的tcad评价
本文介绍了一种利用无掺杂Ge/Si异质结构更有效地检测目标生物分子的生物传感器。为了将生物隧道场效应晶体管内的本征锗基半导体转换为P+区域,我们用两个重掺杂硅层包围了源。这解决了诸如硅化物形成和寄生金属到源隧穿等问题,这些问题在基于电荷等离子体的器件中很常见。在漏极区,我们采用了N+掺杂而不是电感金属,从而提高了交流性能。为了验证我们的发现,我们使用了一个校准的器件模拟器,并提出了我们的生物tfet的详细制造过程。为了评估我们的生物传感器的功能,我们执行了一系列模拟来量化其性能指标,包括漏极电流和亚阈值摆幅的灵敏度。由于我们的器件的优化设计,我们获得了理想的参数,如SID = 6.15 × 106, SSSavg = 0.92在VGS = 0.7 V。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信