SOTIF-Oriented Distributed Control for Connected Autonomous Vehicles Platoons

IF 8.6 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Xiaohua Ge;Dario Giuseppe Lui;Carlo Motta;Alberto Petrillo;Stefania Santini
{"title":"SOTIF-Oriented Distributed Control for Connected Autonomous Vehicles Platoons","authors":"Xiaohua Ge;Dario Giuseppe Lui;Carlo Motta;Alberto Petrillo;Stefania Santini","doi":"10.1109/TSMC.2025.3538043","DOIUrl":null,"url":null,"abstract":"This article extends the problem of safety of the intended functionality (SOTIF) to the platooning of connected autonomous vehicles (CAVs). In such multivehicle systems, SOTIF objectives are particularly challenging, since new issues arise due to the presence of interactions that propagate and intensify the effects and the risk connected to faults/failures/uncertainties, triggered by any platoon member and external conditions. To tackle and solve the SOTIF-oriented platoon control problem, we propose a robust and resilient decentralized control protocol, based on distributed observer which exploits the information shared via the Vehicle-to-Everything (V2X) communication network. The approach allows maintaining acceptable SOTIF performance in adversarial conditions, mitigating the effects of the unreasonable risks originated from sensors/actuators performance limitations/faults and disturbances. The uniformly ultimate bounded (UUB) stability and the input-to-state string stability (ISSS) of the platoon dynamics are analytically proved via the Lyapunov theory. Feasible linear matrix inequalities (LMIs) are obtained as stability conditions, whose solution allows adapting the distributed control/observer gains according to leader-tracking performance and robustness margins. A detailed analysis via the vehicular co-simulation platform mixed traffic simulator (MiTraS) corroborates the theoretical derivations and shows the achievement of the SOTIF platoon goals for a set of nontrivial and uncertain driving scenarios.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 4","pages":"3049-3063"},"PeriodicalIF":8.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10892260/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This article extends the problem of safety of the intended functionality (SOTIF) to the platooning of connected autonomous vehicles (CAVs). In such multivehicle systems, SOTIF objectives are particularly challenging, since new issues arise due to the presence of interactions that propagate and intensify the effects and the risk connected to faults/failures/uncertainties, triggered by any platoon member and external conditions. To tackle and solve the SOTIF-oriented platoon control problem, we propose a robust and resilient decentralized control protocol, based on distributed observer which exploits the information shared via the Vehicle-to-Everything (V2X) communication network. The approach allows maintaining acceptable SOTIF performance in adversarial conditions, mitigating the effects of the unreasonable risks originated from sensors/actuators performance limitations/faults and disturbances. The uniformly ultimate bounded (UUB) stability and the input-to-state string stability (ISSS) of the platoon dynamics are analytically proved via the Lyapunov theory. Feasible linear matrix inequalities (LMIs) are obtained as stability conditions, whose solution allows adapting the distributed control/observer gains according to leader-tracking performance and robustness margins. A detailed analysis via the vehicular co-simulation platform mixed traffic simulator (MiTraS) corroborates the theoretical derivations and shows the achievement of the SOTIF platoon goals for a set of nontrivial and uncertain driving scenarios.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Systems Man Cybernetics-Systems
IEEE Transactions on Systems Man Cybernetics-Systems AUTOMATION & CONTROL SYSTEMS-COMPUTER SCIENCE, CYBERNETICS
CiteScore
18.50
自引率
11.50%
发文量
812
审稿时长
6 months
期刊介绍: The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信