Zhen-yu Feng , Jia-wen Zhou , Xing-guo Yang , Long-jin Tan , Hai-mei Liao
{"title":"Prediction of landslide dam stability and influencing factors analysis","authors":"Zhen-yu Feng , Jia-wen Zhou , Xing-guo Yang , Long-jin Tan , Hai-mei Liao","doi":"10.1016/j.enggeo.2025.108021","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient prediction of landslide dam stability is crucial for emergency response and damage reduction. In this study, a comprehensive analysis is conducted on eight landslide dam characteristics. Four machine learning (ML) algorithms, namely Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Networks (ANN) and Logistic Regression (LR), are then applied to predict the stability of landslide dams. This prediction is based on two stability definitions: the dam's ability to endure for over a year and its collapse status at the time of the study. The results derived from the test set distinctly demonstrate that the RF model outperforms the other three ones in terms of its effectiveness. By employing the Synthetic Minority Over-sampling Technique (SMOTE), the issue of the RF model being biased towards predicting unstable dams due to imbalanced samples has been effectively alleviated. This approach resulted in overall accuracies of 76.19 % and 82.35 %, with biases of 0.8 % and 11.6 % and Classification Efficiency Index (CEI) values of 1.024 and 1.046, respectively, under the two stability definitions. Through Principal Component Analysis (PCA), it is further determined that the largest 5 % of particles constitute the primary materials influencing the stability of landslide dams. Additionally, a novel index termed the dam composition index (DCI) has been proposed to characterize the gradation of landslide dams. The proposed prediction method for landslide dam stability demonstrates outstanding performance and contributes to more effective emergency planning.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"350 ","pages":"Article 108021"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795225001176","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient prediction of landslide dam stability is crucial for emergency response and damage reduction. In this study, a comprehensive analysis is conducted on eight landslide dam characteristics. Four machine learning (ML) algorithms, namely Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Networks (ANN) and Logistic Regression (LR), are then applied to predict the stability of landslide dams. This prediction is based on two stability definitions: the dam's ability to endure for over a year and its collapse status at the time of the study. The results derived from the test set distinctly demonstrate that the RF model outperforms the other three ones in terms of its effectiveness. By employing the Synthetic Minority Over-sampling Technique (SMOTE), the issue of the RF model being biased towards predicting unstable dams due to imbalanced samples has been effectively alleviated. This approach resulted in overall accuracies of 76.19 % and 82.35 %, with biases of 0.8 % and 11.6 % and Classification Efficiency Index (CEI) values of 1.024 and 1.046, respectively, under the two stability definitions. Through Principal Component Analysis (PCA), it is further determined that the largest 5 % of particles constitute the primary materials influencing the stability of landslide dams. Additionally, a novel index termed the dam composition index (DCI) has been proposed to characterize the gradation of landslide dams. The proposed prediction method for landslide dam stability demonstrates outstanding performance and contributes to more effective emergency planning.
期刊介绍:
Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.