A hierarchical population model for the estimation of latent prey abundance and demographic rates of a nomadic predator

IF 2.6 3区 环境科学与生态学 Q2 ECOLOGY
Thomas V. Riecke , Pierre-Alain Ravussin , Ludovic Longchamp , Daniel Trolliet , Dan Gibson , Michael Schaub
{"title":"A hierarchical population model for the estimation of latent prey abundance and demographic rates of a nomadic predator","authors":"Thomas V. Riecke ,&nbsp;Pierre-Alain Ravussin ,&nbsp;Ludovic Longchamp ,&nbsp;Daniel Trolliet ,&nbsp;Dan Gibson ,&nbsp;Michael Schaub","doi":"10.1016/j.ecolmodel.2025.111077","DOIUrl":null,"url":null,"abstract":"<div><div>Linking the demographic parameters underlying population change to environmental conditions is a central goal of population demography. However, multicollinearity among processes in ecological studies can complicate parameter estimation and inference. We sought to demonstrate the use of structural equation modelling, a technique for estimating hypothesized causal pathways among collinear observed and unobserved variables, in the context of integrated population models. We monitored a population of Tengmalm’s owls(<em>Aegolius funereus</em>) breeding in the Jura Mountains of northwestern Switzerland and eastern France for 31 years (1990-2020) and collected data on captured prey items. We use concepts central to structural equation models (i.e., latent variables) and integrated population models to estimate the effects of latent prey abundance on Tengmalm’s owl demographic parameters. We observed strong positive effects of latent prey abundance during time <span><math><mi>t</mi></math></span> on clutch size, fledging probability, and immigration rates into the breeding population, and strong effects of positive changes in latent prey abundance from time <span><math><mi>t</mi></math></span> to <span><math><mrow><mi>t</mi><mo>+</mo><mn>1</mn></mrow></math></span> on first-year and adult survival. We also observed long-term declines in immigration into the study area. Our work provides a straightforward example of incorporating concepts central to structural equation models (e.g., latent variables) to model environmental processes underlying demographic rates in integrated population models, and has interesting implications for metapopulation ecology of Tengmalm’s owl populations in Europe.</div></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"504 ","pages":"Article 111077"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Modelling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304380025000638","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Linking the demographic parameters underlying population change to environmental conditions is a central goal of population demography. However, multicollinearity among processes in ecological studies can complicate parameter estimation and inference. We sought to demonstrate the use of structural equation modelling, a technique for estimating hypothesized causal pathways among collinear observed and unobserved variables, in the context of integrated population models. We monitored a population of Tengmalm’s owls(Aegolius funereus) breeding in the Jura Mountains of northwestern Switzerland and eastern France for 31 years (1990-2020) and collected data on captured prey items. We use concepts central to structural equation models (i.e., latent variables) and integrated population models to estimate the effects of latent prey abundance on Tengmalm’s owl demographic parameters. We observed strong positive effects of latent prey abundance during time t on clutch size, fledging probability, and immigration rates into the breeding population, and strong effects of positive changes in latent prey abundance from time t to t+1 on first-year and adult survival. We also observed long-term declines in immigration into the study area. Our work provides a straightforward example of incorporating concepts central to structural equation models (e.g., latent variables) to model environmental processes underlying demographic rates in integrated population models, and has interesting implications for metapopulation ecology of Tengmalm’s owl populations in Europe.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecological Modelling
Ecological Modelling 环境科学-生态学
CiteScore
5.60
自引率
6.50%
发文量
259
审稿时长
69 days
期刊介绍: The journal is concerned with the use of mathematical models and systems analysis for the description of ecological processes and for the sustainable management of resources. Human activity and well-being are dependent on and integrated with the functioning of ecosystems and the services they provide. We aim to understand these basic ecosystem functions using mathematical and conceptual modelling, systems analysis, thermodynamics, computer simulations, and ecological theory. This leads to a preference for process-based models embedded in theory with explicit causative agents as opposed to strictly statistical or correlative descriptions. These modelling methods can be applied to a wide spectrum of issues ranging from basic ecology to human ecology to socio-ecological systems. The journal welcomes research articles, short communications, review articles, letters to the editor, book reviews, and other communications. The journal also supports the activities of the [International Society of Ecological Modelling (ISEM)](http://www.isemna.org/).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信