Achieving Safe and Stable Lithium-Based Batteries via Molecular Dipole Interactions

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Siru He, Peide Zhu, Zhixin Liu, Lida Wang, Zhitong Li, Yuejiao Chen, Libao Chen, Xingzhu Wang, Baomin Xu
{"title":"Achieving Safe and Stable Lithium-Based Batteries via Molecular Dipole Interactions","authors":"Siru He, Peide Zhu, Zhixin Liu, Lida Wang, Zhitong Li, Yuejiao Chen, Libao Chen, Xingzhu Wang, Baomin Xu","doi":"10.1021/acsenergylett.5c00710","DOIUrl":null,"url":null,"abstract":"The lithium metal battery technology, utilizing a lithium metal anode and high-voltage cathodes, offers high power density, but faces challenges such as dendrite growth, dead lithium, and poor interfacial dynamics. Here, a nonflammable electrolyte is proposed based on dipole interactions between HTFP and DME solvents, enhancing Li<sup>+</sup>-FSI<sup>–</sup> coordination and reducing Li<sup>+</sup> desolvation energy. The dipole interaction lowers the LUMO energy of solvated FSI<sup>–</sup>, promoting the formation of a stable interfacial phase and efficient lithium deposition and stripping. Consequently, Li||NCM811 cells exhibit ∼90% capacity retention over 500 cycles with &gt;99.5% Coulombic efficiency and also perform well at −30 °C. In addition, commercial graphite||NCM523 pouch cells achieve 90% capacity retention after 500 cycles and high safety.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"34 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.5c00710","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The lithium metal battery technology, utilizing a lithium metal anode and high-voltage cathodes, offers high power density, but faces challenges such as dendrite growth, dead lithium, and poor interfacial dynamics. Here, a nonflammable electrolyte is proposed based on dipole interactions between HTFP and DME solvents, enhancing Li+-FSI coordination and reducing Li+ desolvation energy. The dipole interaction lowers the LUMO energy of solvated FSI, promoting the formation of a stable interfacial phase and efficient lithium deposition and stripping. Consequently, Li||NCM811 cells exhibit ∼90% capacity retention over 500 cycles with >99.5% Coulombic efficiency and also perform well at −30 °C. In addition, commercial graphite||NCM523 pouch cells achieve 90% capacity retention after 500 cycles and high safety.

Abstract Image

通过分子偶极相互作用实现安全稳定的锂基电池
锂金属电池技术利用锂金属阳极和高压阴极,提供了高功率密度,但面临枝晶生长、死锂和界面动力学差等挑战。本文提出了一种基于HTFP和二甲醚溶剂之间偶极相互作用的不燃电解质,增强Li+- fsi -配位,降低Li+脱溶能。偶极相互作用降低了溶剂化FSI -的LUMO能量,促进了稳定界面相的形成和高效的锂沉积和溶出。因此,Li||NCM811电池在500次循环中表现出约90%的容量保持率和99.5%的库仑效率,并且在- 30°C下也表现良好。此外,商用石墨||NCM523袋电池在500次循环后达到90%的容量保持率和高安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信