Mingyu Ma, Gang Ye, Soyeong Jang, Yazhuo Kuang, Linlong Zhang, Shuyan Shao, L. Jan Anton Koster, Derya Baran, Jian Liu
{"title":"Realizing an N-Type Organic Thermoelectric ZT of 0.46","authors":"Mingyu Ma, Gang Ye, Soyeong Jang, Yazhuo Kuang, Linlong Zhang, Shuyan Shao, L. Jan Anton Koster, Derya Baran, Jian Liu","doi":"10.1021/acsenergylett.4c03590","DOIUrl":null,"url":null,"abstract":"The performance of n-type organic thermoelectric materials is significantly limited by a lack of a deep understanding of the structure–property relationship. In this study, we aim to establish a connection between the molecular structure and the density of states (DOS) profile related to thermoelectric performance. We synthesized three new diketopyrrolopyrrole-based polymers, each functionalized with amphipathic side chains. The only difference among these polymers is the number of sp<sup>2</sup>-N substitutions. Our findings indicate that as the number of substitutions increases, the DOS profile widens and intensifies, creating new peaks that extend toward the bandgap. This enables more efficient doping and coherent charge transport. Consequently, we achieved a high electrical conductivity of 63.8 S cm<sup>–1</sup>, a power factor of 111.8 μW m<sup>–1</sup> K<sup>–2</sup>, and a ZT of 0.46, representing a significant advancement in n-type organic thermoelectrics. This work provides valuable guidelines for designing high-performance thermoelectric materials by rationally tailoring the DOS profile.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"70 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c03590","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The performance of n-type organic thermoelectric materials is significantly limited by a lack of a deep understanding of the structure–property relationship. In this study, we aim to establish a connection between the molecular structure and the density of states (DOS) profile related to thermoelectric performance. We synthesized three new diketopyrrolopyrrole-based polymers, each functionalized with amphipathic side chains. The only difference among these polymers is the number of sp2-N substitutions. Our findings indicate that as the number of substitutions increases, the DOS profile widens and intensifies, creating new peaks that extend toward the bandgap. This enables more efficient doping and coherent charge transport. Consequently, we achieved a high electrical conductivity of 63.8 S cm–1, a power factor of 111.8 μW m–1 K–2, and a ZT of 0.46, representing a significant advancement in n-type organic thermoelectrics. This work provides valuable guidelines for designing high-performance thermoelectric materials by rationally tailoring the DOS profile.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.