{"title":"Deciphering the source contribution of microplastics in the glaciers of the North-Western Himalayas","authors":"Shahid Ahmad Dar, Khalid Muzamil Gani","doi":"10.1016/j.jhazmat.2025.137975","DOIUrl":null,"url":null,"abstract":"Microplastics (MPs) and nanoplastics (NPs) have been largely studied in marine environments, but there lies a significant gap in assessing their occurrence and impacts in glacier environments. This study investigates the occurrence and pollution risks of MPs and NPs in glaciers, suspended air, and dry deposition across the northwestern Himalayas. MPs concentration ranged from 1000 particles m<sup>-3</sup> in Kolahai glacier to 151000 particles m<sup>-3</sup> in Thajwas glacier. In suspended air, MPs occurred at 5 particles m<sup>-3</sup>, while dry deposition samples showed a concentration ranging from 1-13 particles m<sup>-2</sup> d<sup>-1</sup>. Dynamic light scattering (DLS) confirmed the presence of NPs in all glaciers, with sizes varying between 31-689<!-- --> <!-- -->nm in Thajwas glacier and 360-953<!-- --> <!-- -->nm in Harmukh glacier. HYSPLIT modelling revealed that air masses reaching Himalayan glaciers predominantly originate from global sources (75%). The pollution load index (PLI) ranged from 3.9 (hazard category I) to 40 (hazard category IV), indicating moderate to excessive pollution of glaciers. While as polymer hazard index (PHI) ranged from 10 (hazard category II) to 1987 (hazard category V), indicating medium to extreme danger due to presence of polyvinyl chloride (PVC) and polyacrylonitrile (PAN). The presence of MPs and NPs accelerate glacier melting due to their light absorbing properties underscoring need for further studies.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"18 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137975","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics (MPs) and nanoplastics (NPs) have been largely studied in marine environments, but there lies a significant gap in assessing their occurrence and impacts in glacier environments. This study investigates the occurrence and pollution risks of MPs and NPs in glaciers, suspended air, and dry deposition across the northwestern Himalayas. MPs concentration ranged from 1000 particles m-3 in Kolahai glacier to 151000 particles m-3 in Thajwas glacier. In suspended air, MPs occurred at 5 particles m-3, while dry deposition samples showed a concentration ranging from 1-13 particles m-2 d-1. Dynamic light scattering (DLS) confirmed the presence of NPs in all glaciers, with sizes varying between 31-689 nm in Thajwas glacier and 360-953 nm in Harmukh glacier. HYSPLIT modelling revealed that air masses reaching Himalayan glaciers predominantly originate from global sources (75%). The pollution load index (PLI) ranged from 3.9 (hazard category I) to 40 (hazard category IV), indicating moderate to excessive pollution of glaciers. While as polymer hazard index (PHI) ranged from 10 (hazard category II) to 1987 (hazard category V), indicating medium to extreme danger due to presence of polyvinyl chloride (PVC) and polyacrylonitrile (PAN). The presence of MPs and NPs accelerate glacier melting due to their light absorbing properties underscoring need for further studies.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.