Surfactant-Mediated Interfacial Hydrogen Evolution Reaction

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Boubakar Sanogo, Pratibha Dogra, Kangkana Kalita, Xuehua Zhang
{"title":"Surfactant-Mediated Interfacial Hydrogen Evolution Reaction","authors":"Boubakar Sanogo, Pratibha Dogra, Kangkana Kalita, Xuehua Zhang","doi":"10.1021/acsami.4c20384","DOIUrl":null,"url":null,"abstract":"Hydrogen is a highly promising clean energy source without greenhouse gas emissions. Liquid organic hydrogen carriers (LOHCs) offer a promising alternative for convenient storage and transportation. This study investigates the interfacial hydrogen evolution reaction between polymethylhydrosiloxane (PMH), a representative LOHC, and water, focusing on controlling reaction kinetics by modifying interfacial properties with surfactants. The hydrogen production rate at a planar interface between PMH and water catalyzed by sodium hydroxide revealed that surfactants such as Tween 20 and sodium dodecyl sulfate (SDS) can slow down the hydrogen formation by 5 to 20 times, possibly due to an overcrowded interface effect. In contrast, cationic surfactants, such as hexadecyltrimethylammonium bromide (CTAB) and other quaternary ammonium surfactants, act as pseudo phase-transfer catalysts and accelerate the hydrogen formation rate up to 3-fold at a concentration of 0.05 times their critical micelle concentration. As the PMH microdroplets were dispersed in the surfactant aqueous solution, the conversion yields of hydrogen with cationic surfactants reached up to 45%, which is significantly higher than the yields achieved with Tween 20 or SDS. The effects of the surfactant type were further confirmed by following hydrogen bubble growth in a single PMH droplet. Overall, our findings demonstrate that selecting an appropriate surfactant can provide an effective control over the interfacial reaction rate of dehydrogenation of LOHCs. This offers strategies for manipulating liquid–liquid interfaces and controlling in-demand hydrogen production.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"183 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c20384","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen is a highly promising clean energy source without greenhouse gas emissions. Liquid organic hydrogen carriers (LOHCs) offer a promising alternative for convenient storage and transportation. This study investigates the interfacial hydrogen evolution reaction between polymethylhydrosiloxane (PMH), a representative LOHC, and water, focusing on controlling reaction kinetics by modifying interfacial properties with surfactants. The hydrogen production rate at a planar interface between PMH and water catalyzed by sodium hydroxide revealed that surfactants such as Tween 20 and sodium dodecyl sulfate (SDS) can slow down the hydrogen formation by 5 to 20 times, possibly due to an overcrowded interface effect. In contrast, cationic surfactants, such as hexadecyltrimethylammonium bromide (CTAB) and other quaternary ammonium surfactants, act as pseudo phase-transfer catalysts and accelerate the hydrogen formation rate up to 3-fold at a concentration of 0.05 times their critical micelle concentration. As the PMH microdroplets were dispersed in the surfactant aqueous solution, the conversion yields of hydrogen with cationic surfactants reached up to 45%, which is significantly higher than the yields achieved with Tween 20 or SDS. The effects of the surfactant type were further confirmed by following hydrogen bubble growth in a single PMH droplet. Overall, our findings demonstrate that selecting an appropriate surfactant can provide an effective control over the interfacial reaction rate of dehydrogenation of LOHCs. This offers strategies for manipulating liquid–liquid interfaces and controlling in-demand hydrogen production.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信