{"title":"From Theophylline to Adenine or preQ1: Repurposing a DNA Aptamer Revealed by Crystal Structure Analysis","authors":"Lin Huang, Xiaowei Lin, Yuanyin Huang, Jinchao Huang, Hao Yuan, Yuhang Luo, Zhizhong Lu, Ying Ao, Jian Huang, Shuo-Bin Chen, Zhichao Miao","doi":"10.1002/anie.202504107","DOIUrl":null,"url":null,"abstract":"Aptamers, which are short, single-stranded DNA or RNA, are capable of binding to a wide array of targets with exceptional selectivity. Those with high affinity for theophylline have the potential to serve as biosensors, crucial for tracking theophylline levels in the treatment of respiratory conditions. Despite the extensive structural characterization of the RNA theophylline aptamer, the DNA counterpart’s ligand-recognition mechanism has remained unclear. Here, we elucidate the DNA theophylline aptamer’s ligand-binding mechanism through high-resolution crystal structures of its complexes with theophylline, 3-methylxanthine, and hypoxanthine. Guided by these structural insights, we computationally redesigned the theophylline-binding pocket via rational mutagenesis of key nucleotides, generating novel aptamers selective for adenine and prequeuosine (preQ1) ligands. These engineered aptamers were validated through biochemical and crystallographic analyses. By integrating structural biology with computational design, our work provides a relatively simple and effective method for developing new aptamers. While this strategy does not supplant SELEX, it serves as a beneficial complement to it.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"14 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202504107","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Aptamers, which are short, single-stranded DNA or RNA, are capable of binding to a wide array of targets with exceptional selectivity. Those with high affinity for theophylline have the potential to serve as biosensors, crucial for tracking theophylline levels in the treatment of respiratory conditions. Despite the extensive structural characterization of the RNA theophylline aptamer, the DNA counterpart’s ligand-recognition mechanism has remained unclear. Here, we elucidate the DNA theophylline aptamer’s ligand-binding mechanism through high-resolution crystal structures of its complexes with theophylline, 3-methylxanthine, and hypoxanthine. Guided by these structural insights, we computationally redesigned the theophylline-binding pocket via rational mutagenesis of key nucleotides, generating novel aptamers selective for adenine and prequeuosine (preQ1) ligands. These engineered aptamers were validated through biochemical and crystallographic analyses. By integrating structural biology with computational design, our work provides a relatively simple and effective method for developing new aptamers. While this strategy does not supplant SELEX, it serves as a beneficial complement to it.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.