Zilong Xia , Yingjie Li , Shanchuan Guo , Encai Bao , Bo Yuan , Ruishan Chen , Pengfei Tang , Chenghan Yang , Peijun Du
{"title":"The impact of photovoltaic plants on dryland vegetation phenology revealed by time-series remote sensing images","authors":"Zilong Xia , Yingjie Li , Shanchuan Guo , Encai Bao , Bo Yuan , Ruishan Chen , Pengfei Tang , Chenghan Yang , Peijun Du","doi":"10.1016/j.agrformet.2025.110505","DOIUrl":null,"url":null,"abstract":"<div><div>To limit global warming, solar energy production is expanding in drylands globally. This study investigated phenological changes caused by photovoltaic (PV) plants in China's drylands using satellite-derived metrics. The results show that the deployment of PV plants has advanced the start of the growing season (SOS) by a median of 13.7 days, while extending the length of the growing season (LOS) by a median of 16.3 days in arid and semi-arid drylands. Soil moisture was the main factor influencing phenological changes in these regions, indicating that the evaporation-reducing effect of PV panels strongly regulates phenology. In sub-humid drylands, solar radiation was the primary factor, with shading effects delaying SOS and shortening LOS. The phenology of PV plants in these regions did not show significant changes, possibly because the shading effect of the PV panels delays SOS and shortens LOS, which may counteract the effects of increased soil moisture on phenology.</div></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":"367 ","pages":"Article 110505"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016819232500125X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
To limit global warming, solar energy production is expanding in drylands globally. This study investigated phenological changes caused by photovoltaic (PV) plants in China's drylands using satellite-derived metrics. The results show that the deployment of PV plants has advanced the start of the growing season (SOS) by a median of 13.7 days, while extending the length of the growing season (LOS) by a median of 16.3 days in arid and semi-arid drylands. Soil moisture was the main factor influencing phenological changes in these regions, indicating that the evaporation-reducing effect of PV panels strongly regulates phenology. In sub-humid drylands, solar radiation was the primary factor, with shading effects delaying SOS and shortening LOS. The phenology of PV plants in these regions did not show significant changes, possibly because the shading effect of the PV panels delays SOS and shortens LOS, which may counteract the effects of increased soil moisture on phenology.
期刊介绍:
Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published.
Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.