The impact of photovoltaic plants on dryland vegetation phenology revealed by time-series remote sensing images

IF 5.6 1区 农林科学 Q1 AGRONOMY
Zilong Xia , Yingjie Li , Shanchuan Guo , Encai Bao , Bo Yuan , Ruishan Chen , Pengfei Tang , Chenghan Yang , Peijun Du
{"title":"The impact of photovoltaic plants on dryland vegetation phenology revealed by time-series remote sensing images","authors":"Zilong Xia ,&nbsp;Yingjie Li ,&nbsp;Shanchuan Guo ,&nbsp;Encai Bao ,&nbsp;Bo Yuan ,&nbsp;Ruishan Chen ,&nbsp;Pengfei Tang ,&nbsp;Chenghan Yang ,&nbsp;Peijun Du","doi":"10.1016/j.agrformet.2025.110505","DOIUrl":null,"url":null,"abstract":"<div><div>To limit global warming, solar energy production is expanding in drylands globally. This study investigated phenological changes caused by photovoltaic (PV) plants in China's drylands using satellite-derived metrics. The results show that the deployment of PV plants has advanced the start of the growing season (SOS) by a median of 13.7 days, while extending the length of the growing season (LOS) by a median of 16.3 days in arid and semi-arid drylands. Soil moisture was the main factor influencing phenological changes in these regions, indicating that the evaporation-reducing effect of PV panels strongly regulates phenology. In sub-humid drylands, solar radiation was the primary factor, with shading effects delaying SOS and shortening LOS. The phenology of PV plants in these regions did not show significant changes, possibly because the shading effect of the PV panels delays SOS and shortens LOS, which may counteract the effects of increased soil moisture on phenology.</div></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":"367 ","pages":"Article 110505"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016819232500125X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

To limit global warming, solar energy production is expanding in drylands globally. This study investigated phenological changes caused by photovoltaic (PV) plants in China's drylands using satellite-derived metrics. The results show that the deployment of PV plants has advanced the start of the growing season (SOS) by a median of 13.7 days, while extending the length of the growing season (LOS) by a median of 16.3 days in arid and semi-arid drylands. Soil moisture was the main factor influencing phenological changes in these regions, indicating that the evaporation-reducing effect of PV panels strongly regulates phenology. In sub-humid drylands, solar radiation was the primary factor, with shading effects delaying SOS and shortening LOS. The phenology of PV plants in these regions did not show significant changes, possibly because the shading effect of the PV panels delays SOS and shortens LOS, which may counteract the effects of increased soil moisture on phenology.
基于时序遥感影像的光伏电站对旱地植被物候的影响
为了限制全球变暖,太阳能生产正在全球干旱地区扩大。本研究利用卫星衍生指标研究了中国旱地光伏电站引起的物候变化。结果表明:在干旱和半干旱旱地,光伏电站的部署使生长季开始时间(SOS)提前了13.7天,使生长季长度(LOS)延长了16.3天;土壤湿度是影响这些地区物候变化的主要因素,说明光伏板的减蒸发效应对物候变化具有较强的调节作用。在半湿润旱地,太阳辐射是主要影响因子,遮阳效应延迟了SOS,缩短了LOS。这些地区的光伏电站物候变化不明显,可能是由于光伏板的遮阳作用延迟了SOS,缩短了LOS,从而抵消了土壤水分增加对物候的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
9.70%
发文量
415
审稿时长
69 days
期刊介绍: Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published. Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信