Through-focus scanning re-radiance simulation for semiconductor inspection system development

IF 1.1 4区 物理与天体物理 Q4 OPTICS
Byeongjoon Jeong, Heejoo Choi, Daewook Kim, Youngsik Kim
{"title":"Through-focus scanning re-radiance simulation for semiconductor inspection system development","authors":"Byeongjoon Jeong, Heejoo Choi, Daewook Kim, Youngsik Kim","doi":"10.1007/s10043-025-00959-y","DOIUrl":null,"url":null,"abstract":"<p>In this study, we present a through-focus re-radiation simulation aimed at detecting scattering from semiconductor structures. We employ the beam synthesis propagation (BSP) module within the finite-difference time-domain (FDTD) method, optimizing the simulation of optical systems by reducing time and computational resources typically required for imaging and illumination. To validate the approach, we simulated scattering from Silicon nitride (Si<sub>3</sub>N<sub>4</sub>) lines on a silicon (Si) substrate with various defect sizes and types at a 193 nm wavelength. The results demonstrated the detection of specific defect signals and identified the limitations of detectable defect sizes. These findings are intended to serve as pre-processing data for predicting outcomes in through-focus scanning optical microscopy (TSOM) imaging.</p>","PeriodicalId":722,"journal":{"name":"Optical Review","volume":"25 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Review","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s10043-025-00959-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we present a through-focus re-radiation simulation aimed at detecting scattering from semiconductor structures. We employ the beam synthesis propagation (BSP) module within the finite-difference time-domain (FDTD) method, optimizing the simulation of optical systems by reducing time and computational resources typically required for imaging and illumination. To validate the approach, we simulated scattering from Silicon nitride (Si3N4) lines on a silicon (Si) substrate with various defect sizes and types at a 193 nm wavelength. The results demonstrated the detection of specific defect signals and identified the limitations of detectable defect sizes. These findings are intended to serve as pre-processing data for predicting outcomes in through-focus scanning optical microscopy (TSOM) imaging.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Optical Review
Optical Review 物理-光学
CiteScore
2.30
自引率
0.00%
发文量
62
审稿时长
2 months
期刊介绍: Optical Review is an international journal published by the Optical Society of Japan. The scope of the journal is: General and physical optics; Quantum optics and spectroscopy; Information optics; Photonics and optoelectronics; Biomedical photonics and biological optics; Lasers; Nonlinear optics; Optical systems and technologies; Optical materials and manufacturing technologies; Vision; Infrared and short wavelength optics; Cross-disciplinary areas such as environmental, energy, food, agriculture and space technologies; Other optical methods and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信