Experimental and Mechanical-based Analysis of Fatigue-Induced Pull-Out Degradation in Single Hooked-End Steel Fiber in Fiber-Reinforced Cementitious Composites

IF 10.8 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Mohamed Adel , Wang Li , Yan Xiao , Tamon Ueda
{"title":"Experimental and Mechanical-based Analysis of Fatigue-Induced Pull-Out Degradation in Single Hooked-End Steel Fiber in Fiber-Reinforced Cementitious Composites","authors":"Mohamed Adel ,&nbsp;Wang Li ,&nbsp;Yan Xiao ,&nbsp;Tamon Ueda","doi":"10.1016/j.cemconcomp.2025.106054","DOIUrl":null,"url":null,"abstract":"<div><div>Fatigue analysis of steel fiber-reinforced cementitious composites (SFRCC) is crucial for structural design and safety assessment under repeated loading cycles. Experimental studies have demonstrated cyclic degradation in SFRCC, attributed to the deterioration of fiber-bridging strength. However, a comprehensive analytical quantification of fatigue-dependent parameters for deformed fibers across multiple scales remains limited. This study aims to characterize the fatigue dependency of SFRCC at the fiber-scale through analytical models based on experimental investigations. Static and fatigue pull-out tests were conducted on single hooked-end steel fibers embedded with a 20 mm length. Fibers were initially pulled to varying displacement levels (0.125, 0.25, 0.50, 0.75, 1.00, 2.50, 4.00, and 5.00 mm) before cyclic loading. Fatigue tests at a frequency of 5 Hz continued up to two million loading cycles or until pull-out failure, during which the fiber hook was progressively straightened. X-ray Computed Tomography (CT) scans were employed to investigate the associated failure mechanisms. A novel mechanical model was proposed to capture the displacement evolution rate during fatigue pull-out loading and predict the fatigue life. This model demonstrates a satisfactory correlation with the experimental results, providing a valuable tool for understanding and predicting the fatigue behavior of SFRCC.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"160 ","pages":"Article 106054"},"PeriodicalIF":10.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946525001362","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fatigue analysis of steel fiber-reinforced cementitious composites (SFRCC) is crucial for structural design and safety assessment under repeated loading cycles. Experimental studies have demonstrated cyclic degradation in SFRCC, attributed to the deterioration of fiber-bridging strength. However, a comprehensive analytical quantification of fatigue-dependent parameters for deformed fibers across multiple scales remains limited. This study aims to characterize the fatigue dependency of SFRCC at the fiber-scale through analytical models based on experimental investigations. Static and fatigue pull-out tests were conducted on single hooked-end steel fibers embedded with a 20 mm length. Fibers were initially pulled to varying displacement levels (0.125, 0.25, 0.50, 0.75, 1.00, 2.50, 4.00, and 5.00 mm) before cyclic loading. Fatigue tests at a frequency of 5 Hz continued up to two million loading cycles or until pull-out failure, during which the fiber hook was progressively straightened. X-ray Computed Tomography (CT) scans were employed to investigate the associated failure mechanisms. A novel mechanical model was proposed to capture the displacement evolution rate during fatigue pull-out loading and predict the fatigue life. This model demonstrates a satisfactory correlation with the experimental results, providing a valuable tool for understanding and predicting the fatigue behavior of SFRCC.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cement & concrete composites
Cement & concrete composites 工程技术-材料科学:复合
CiteScore
18.70
自引率
11.40%
发文量
459
审稿时长
65 days
期刊介绍: Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信