The road ahead in materials and technologies for volumetric 3D printing

IF 79.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Paulina Nunez Bernal, Sammy Florczak, Sebastian Inacker, Xiao Kuang, Jorge Madrid-Wolff, Martin Regehly, Stefan Hecht, Yu Shrike Zhang, Christophe Moser, Riccardo Levato
{"title":"The road ahead in materials and technologies for volumetric 3D printing","authors":"Paulina Nunez Bernal, Sammy Florczak, Sebastian Inacker, Xiao Kuang, Jorge Madrid-Wolff, Martin Regehly, Stefan Hecht, Yu Shrike Zhang, Christophe Moser, Riccardo Levato","doi":"10.1038/s41578-025-00785-3","DOIUrl":null,"url":null,"abstract":"<p>Volumetric 3D printing enables the rapid fabrication of centimetre-scale objects, with the fastest techniques requiring only a few seconds. Having emerged during the past 7 years, this new family of technologies is posed to revolutionize additive manufacturing, fabricating objects and functional parts in a layerless fashion directly within a vat of material in response to optical and acoustic fields. Modern volumetric 3D printing methods are overcoming many challenges inherent to conventional layer-by-layer approaches, the standard in research and industry for the past 40 years. This Review focuses on identifying upcoming challenges and research directions in materials chemistry and process engineering to move volumetric 3D printing from its infancy to its broader adoption. Recent advances include the development of techniques based on optical tomography, light and acoustic holography, xolography, multiwavelength and upconversion-mediated printing, as well as the introduction of materials with custom-designed properties. Promising applications in the development of optical and photonic components, rapid prototyping, soft robotics and bioprinting of living cells are discussed along with a vision for the evolution of volumetric manufacturing towards a broadly accessible technology platform.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"20 1","pages":""},"PeriodicalIF":79.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41578-025-00785-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Volumetric 3D printing enables the rapid fabrication of centimetre-scale objects, with the fastest techniques requiring only a few seconds. Having emerged during the past 7 years, this new family of technologies is posed to revolutionize additive manufacturing, fabricating objects and functional parts in a layerless fashion directly within a vat of material in response to optical and acoustic fields. Modern volumetric 3D printing methods are overcoming many challenges inherent to conventional layer-by-layer approaches, the standard in research and industry for the past 40 years. This Review focuses on identifying upcoming challenges and research directions in materials chemistry and process engineering to move volumetric 3D printing from its infancy to its broader adoption. Recent advances include the development of techniques based on optical tomography, light and acoustic holography, xolography, multiwavelength and upconversion-mediated printing, as well as the introduction of materials with custom-designed properties. Promising applications in the development of optical and photonic components, rapid prototyping, soft robotics and bioprinting of living cells are discussed along with a vision for the evolution of volumetric manufacturing towards a broadly accessible technology platform.

Abstract Image

体积3D打印材料和技术的未来之路
体积3D打印可以快速制造厘米级物体,最快的技术只需要几秒钟。在过去的7年里,这种新的技术系列出现了,它将彻底改变增材制造,直接在一桶材料中以无层的方式制造物体和功能部件,以响应光学和声场。现代体积3D打印方法正在克服传统逐层方法固有的许多挑战,这是过去40年来研究和工业的标准。本综述着重于确定材料化学和工艺工程中即将面临的挑战和研究方向,以使体积3D打印从起步阶段走向更广泛的应用。最近的进展包括基于光学层析成像、光和声全息、全息照相、多波长和上转换介导印刷的技术的发展,以及具有定制设计特性的材料的引入。讨论了在光学和光子元件、快速原型、软机器人和活细胞生物打印方面的有前途的应用,并展望了体积制造向广泛可访问的技术平台的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Reviews Materials
Nature Reviews Materials Materials Science-Biomaterials
CiteScore
119.40
自引率
0.40%
发文量
107
期刊介绍: Nature Reviews Materials is an online-only journal that is published weekly. It covers a wide range of scientific disciplines within materials science. The journal includes Reviews, Perspectives, and Comments. Nature Reviews Materials focuses on various aspects of materials science, including the making, measuring, modelling, and manufacturing of materials. It examines the entire process of materials science, from laboratory discovery to the development of functional devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信