Isotopic source signatures of stratospheric CO inferred from in situ vertical profiles

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Joram J. D. Hooghiem, Sergey Gromov, Rigel Kivi, Maria Elena Popa, Thomas Röckmann, Huilin Chen
{"title":"Isotopic source signatures of stratospheric CO inferred from in situ vertical profiles","authors":"Joram J. D. Hooghiem, Sergey Gromov, Rigel Kivi, Maria Elena Popa, Thomas Röckmann, Huilin Chen","doi":"10.1038/s41612-025-00986-1","DOIUrl":null,"url":null,"abstract":"<p>The stratospheric CO budget is determined by CH<sub>4</sub> oxidation, OH-driven loss and atmospheric transport. These processes can be constrained using CO mole fractions and isotopic compositions, with the latter being largely unexplored. We present novel stratospheric observations of δ<sup>13</sup>C-CO and δ<sup>18</sup>O-CO vertical profiles, revealing distinct altitude-dependent trends. δ<sup>13</sup>C-CO decreases with altitude due to inverse <sup>13</sup>C kinetic fractionation in the OH sink and <sup>13</sup>C-depleted CO from CH<sub>4</sub> oxidation. In contrast, δ<sup>18</sup>O-CO increases with altitude, driven by <sup>18</sup>O-rich oxygen from O(<sup>1</sup>D) via O<sub>3</sub> photolysis and CO<sub>2</sub> photolysis. Our findings suggest that CO isotopes can act as valuable proxies for quantifying CO production from CO<sub>2</sub> photolysis. Incorporating CO mole fractions and isotopic data into global models enhances evaluations of the stratospheric CH<sub>4</sub> sink and OH abundance, improving our understanding of stratospheric water vapour and its radiative impacts.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"9 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-00986-1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The stratospheric CO budget is determined by CH4 oxidation, OH-driven loss and atmospheric transport. These processes can be constrained using CO mole fractions and isotopic compositions, with the latter being largely unexplored. We present novel stratospheric observations of δ13C-CO and δ18O-CO vertical profiles, revealing distinct altitude-dependent trends. δ13C-CO decreases with altitude due to inverse 13C kinetic fractionation in the OH sink and 13C-depleted CO from CH4 oxidation. In contrast, δ18O-CO increases with altitude, driven by 18O-rich oxygen from O(1D) via O3 photolysis and CO2 photolysis. Our findings suggest that CO isotopes can act as valuable proxies for quantifying CO production from CO2 photolysis. Incorporating CO mole fractions and isotopic data into global models enhances evaluations of the stratospheric CH4 sink and OH abundance, improving our understanding of stratospheric water vapour and its radiative impacts.

Abstract Image

从原位垂直剖面推断的平流层CO同位素源特征
平流层CO收支由CH4氧化、oh驱动损失和大气输送决定。这些过程可以用CO摩尔分数和同位素组成来限制,后者在很大程度上是未知的。我们提出了新的平流层δ13C-CO和δ18O-CO垂直剖面观测,揭示了明显的高度依赖趋势。δ13C-CO随海拔升高而降低,这是由于OH汇中13C的逆动力学分馏和CH4氧化导致的13C-耗尽CO。相比之下,δ18O-CO随海拔升高而增加,这是由O(1D)通过O3光解和CO2光解产生的富18o氧驱动的。我们的研究结果表明,CO同位素可以作为量化CO2光解产生CO的有价值的代用物。将CO摩尔分数和同位素数据纳入全球模式可以增强对平流层CH4汇和OH丰度的评估,提高我们对平流层水汽及其辐射影响的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信