The ZjMYB44-ZjPOD51 module enhances jujube defence response against phytoplasma by upregulating lignin biosynthesis

IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences
Liman Zhang, Hongtai Li, Ximeng Wei, Yuanyuan Li, Zhiguo Liu, Mengjun Liu, Weijie Huang, Huibin Wang, Jin Zhao
{"title":"The ZjMYB44-ZjPOD51 module enhances jujube defence response against phytoplasma by upregulating lignin biosynthesis","authors":"Liman Zhang, Hongtai Li, Ximeng Wei, Yuanyuan Li, Zhiguo Liu, Mengjun Liu, Weijie Huang, Huibin Wang, Jin Zhao","doi":"10.1093/hr/uhaf083","DOIUrl":null,"url":null,"abstract":"Lignin is a major component of the plant cell wall and has a conserved basic defence function in higher plants, helping the plants cope with pathogen infection. However, the regulatory mechanism of lignin biosynthesis in plants under phytoplasma stress remains unclear. In this study, we reported that peroxidase 51 (ZjPOD51), which is involved in lignin monomer polymerization, was induced by phytoplasma infection and that overexpression of ZjPOD51 in phytoplasma-infected jujube seedlings and Arabidopsis plants significantly increased their defence response against phytoplasma. Yeast one-hybrid (Y1H) and luciferase (LUC) assays showed that ZjPOD51 transcription was directly upregulated by ZjMYB44. Genetic validation demonstrated that ZjMYB44 expression was also induced by phytoplasma infection and contributed to lignin accumulation, which consequently enhanced phytoplasma defence in a ZjPOD51-dependent manner. These results demonstrated that the ZjMYB44-ZjPOD51 module enhanced the jujube defence response against phytoplasma by upregulating lignin biosynthesis. Overall, our study first elucidates how plants regulate lignin to enhance their defence response against phytoplasma and provides clues for jujube resistance breeding.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"16 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhaf083","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Lignin is a major component of the plant cell wall and has a conserved basic defence function in higher plants, helping the plants cope with pathogen infection. However, the regulatory mechanism of lignin biosynthesis in plants under phytoplasma stress remains unclear. In this study, we reported that peroxidase 51 (ZjPOD51), which is involved in lignin monomer polymerization, was induced by phytoplasma infection and that overexpression of ZjPOD51 in phytoplasma-infected jujube seedlings and Arabidopsis plants significantly increased their defence response against phytoplasma. Yeast one-hybrid (Y1H) and luciferase (LUC) assays showed that ZjPOD51 transcription was directly upregulated by ZjMYB44. Genetic validation demonstrated that ZjMYB44 expression was also induced by phytoplasma infection and contributed to lignin accumulation, which consequently enhanced phytoplasma defence in a ZjPOD51-dependent manner. These results demonstrated that the ZjMYB44-ZjPOD51 module enhanced the jujube defence response against phytoplasma by upregulating lignin biosynthesis. Overall, our study first elucidates how plants regulate lignin to enhance their defence response against phytoplasma and provides clues for jujube resistance breeding.
ZjMYB44-ZjPOD51模块通过上调木质素的生物合成来增强红枣对植物原体的防御反应
木质素是植物细胞壁的主要成分,在高等植物中具有保守的基本防御功能,帮助植物应对病原体感染。然而,植物原体胁迫下植物木质素生物合成的调控机制尚不清楚。本研究报道了参与木质素单体聚合的过氧化物酶51 (ZjPOD51)在植物原体感染后被诱导表达,并且ZjPOD51在植物原体感染的枣树和拟南芥幼苗中过表达可显著提高其对植物原体的防御反应。酵母单杂交(Y1H)和荧光素酶(LUC)分析表明,ZjMYB44直接上调ZjPOD51的转录。遗传验证表明,ZjMYB44的表达也受植原体感染诱导,并促进木质素积累,从而以zjpod51依赖的方式增强植原体防御。这些结果表明,ZjMYB44-ZjPOD51模块通过上调木质素的生物合成来增强红枣对植原体的防御反应。本研究首次阐明了植物如何调控木质素增强对植物原体的防御反应,为红枣抗病育种提供了线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Horticulture Research
Horticulture Research Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
11.20
自引率
6.90%
发文量
367
审稿时长
20 weeks
期刊介绍: Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信