Aanchal Kumari, Gitanjali Bangal, Basab Kanti Das, Malay Kumar Baroi, Mamta Kumari, Priyanka Das, Kolimi Prashanth Reddy, Rakibul Islam, Devendra Kumar Dhaked, Bapan Pramanik, Subhadeep Roy and Sahnawaz Ahmed
{"title":"Luminescent ultrashort peptide hydrogelator with enhanced photophysical implications and biocompatibility†","authors":"Aanchal Kumari, Gitanjali Bangal, Basab Kanti Das, Malay Kumar Baroi, Mamta Kumari, Priyanka Das, Kolimi Prashanth Reddy, Rakibul Islam, Devendra Kumar Dhaked, Bapan Pramanik, Subhadeep Roy and Sahnawaz Ahmed","doi":"10.1039/D4TB02687J","DOIUrl":null,"url":null,"abstract":"<p >Luminescent peptide hydrogelators have garnered significant attention in biomedical sciences and materials chemistry due to their biological relevance and tunable photophysical features. In this work, we have designed and synthesized a novel ultrashort peptide hydrogelator comprising a tripeptide sequence (FFE) integrated with 1,8-naphthalimide (NI) as an aggregation-induced emissive unit having rich and tuneable photophysical properties. The hydrogelator could self-assemble and form a self-supporting hydrogel having a highly ordered intertwined network structure at pH 5.5 with a minimum gelation concentration of 1 wt/v%. Interestingly, due to the presence of the emissive unit, the assembly could demonstrate strong blue luminescence, which has been thoroughly investigated experimentally. Moreover, spectroscopic investigations and molecular dynamics simulation studies suggest the formation of a β-sheet structure through extended intermolecular H-bonding interactions within the peptide backbones and the strong π–π-stacking interaction among aromatic units, which drive the self-assembly and hydrogelation. The emissive unit of the peptide could arrange in a J-type aggregation pattern and adopt right-handed helical induced chirality in the assembled state. Additionally, the system could exhibit a high safety profile and excellent biocompatibility, when tested in a series of cell lines <em>in vitro</em>. Finally, the intracellular uptake of the system has been exploited, showcasing its luminescence characteristics for potential applications in cellular imaging. The luminescent system holds significant promise for advancing cellular imaging techniques, offering new avenues for research in the future. Briefly, this work highlights the importance of luminescent ultrashort peptide hydrogelators for developing next-generation low-cost functional biomaterials.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 14","pages":" 4406-4418"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02687j","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Luminescent peptide hydrogelators have garnered significant attention in biomedical sciences and materials chemistry due to their biological relevance and tunable photophysical features. In this work, we have designed and synthesized a novel ultrashort peptide hydrogelator comprising a tripeptide sequence (FFE) integrated with 1,8-naphthalimide (NI) as an aggregation-induced emissive unit having rich and tuneable photophysical properties. The hydrogelator could self-assemble and form a self-supporting hydrogel having a highly ordered intertwined network structure at pH 5.5 with a minimum gelation concentration of 1 wt/v%. Interestingly, due to the presence of the emissive unit, the assembly could demonstrate strong blue luminescence, which has been thoroughly investigated experimentally. Moreover, spectroscopic investigations and molecular dynamics simulation studies suggest the formation of a β-sheet structure through extended intermolecular H-bonding interactions within the peptide backbones and the strong π–π-stacking interaction among aromatic units, which drive the self-assembly and hydrogelation. The emissive unit of the peptide could arrange in a J-type aggregation pattern and adopt right-handed helical induced chirality in the assembled state. Additionally, the system could exhibit a high safety profile and excellent biocompatibility, when tested in a series of cell lines in vitro. Finally, the intracellular uptake of the system has been exploited, showcasing its luminescence characteristics for potential applications in cellular imaging. The luminescent system holds significant promise for advancing cellular imaging techniques, offering new avenues for research in the future. Briefly, this work highlights the importance of luminescent ultrashort peptide hydrogelators for developing next-generation low-cost functional biomaterials.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices