Breakthrough Curve Separation Using Applied Solute Tracers.

Ground water Pub Date : 2025-03-18 DOI:10.1111/gwat.13480
Charles J Paradis, Rakiba Sultana, Martin A Dangelmayr, Raymond H Johnson, Ronald D Kent
{"title":"Breakthrough Curve Separation Using Applied Solute Tracers.","authors":"Charles J Paradis, Rakiba Sultana, Martin A Dangelmayr, Raymond H Johnson, Ronald D Kent","doi":"10.1111/gwat.13480","DOIUrl":null,"url":null,"abstract":"<p><p>The separation of advection and dispersion from the breakthrough curve of a potentially reactive solute can help determine if reactive transport mechanisms occurred. This is typically done by solving the advection-dispersion equation and fitting the breakthrough curve of an applied non-reactive solute tracer by adjusting groundwater velocity and the dispersion coefficient; the values of velocity and dispersion are then applied to the breakthrough curve of the potentially reactive solute, and any residuals can be fitted with the appropriate reactive transport mechanisms. A simpler approach is to plot the dimensionless relative concentrations of the non-reactive and reactive solutes on the same breakthrough curves; thus, any differences between the two curves can be attributed to reactive transport. The method proposed here can allow for separating advection and dispersion from the breakthrough curve of a potentially reactive solute based on data only, as opposed to model-derived fitting of groundwater velocity and dispersion, all while preserving the true concentration, as opposed to the dimensionless relative concentration, of the potentially reactive solute. A new measure of overall solute reactivity is also introduced that summates relative temporal moments to quantify and rank the reactivity of a suite of solutes. The method is described and applied to numerical model simulations and field tracer data to demonstrate its utility for combined visual-quantitative breakthrough curve separation to better characterize reactive solute transport in applied tracer studies.</p>","PeriodicalId":94022,"journal":{"name":"Ground water","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ground water","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/gwat.13480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The separation of advection and dispersion from the breakthrough curve of a potentially reactive solute can help determine if reactive transport mechanisms occurred. This is typically done by solving the advection-dispersion equation and fitting the breakthrough curve of an applied non-reactive solute tracer by adjusting groundwater velocity and the dispersion coefficient; the values of velocity and dispersion are then applied to the breakthrough curve of the potentially reactive solute, and any residuals can be fitted with the appropriate reactive transport mechanisms. A simpler approach is to plot the dimensionless relative concentrations of the non-reactive and reactive solutes on the same breakthrough curves; thus, any differences between the two curves can be attributed to reactive transport. The method proposed here can allow for separating advection and dispersion from the breakthrough curve of a potentially reactive solute based on data only, as opposed to model-derived fitting of groundwater velocity and dispersion, all while preserving the true concentration, as opposed to the dimensionless relative concentration, of the potentially reactive solute. A new measure of overall solute reactivity is also introduced that summates relative temporal moments to quantify and rank the reactivity of a suite of solutes. The method is described and applied to numerical model simulations and field tracer data to demonstrate its utility for combined visual-quantitative breakthrough curve separation to better characterize reactive solute transport in applied tracer studies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信