{"title":"Topical delivery of pterostilbene nanoemulgel ameliorates imiquimod-induced psoriasis-like skin inflammation in mice.","authors":"Ankita Sood, Kulbhushan Tikoo","doi":"10.1080/17435889.2025.2480047","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>This study evaluates the therapeutic potential of Pterostilbene (PTN), a natural stilbenoid, in an imiquimod (IMQ)-induced psoriasis model. Due to PTN's poor solubility and bioavailability, a pterostilbene nano-emulsion gel (PTN-NEG) formulation (0.1% and 0.2% w/w) was developed to enhance its therapeutic efficacy.</p><p><strong>Methods: </strong>Psoriasis was induced in C57BL/6J mice by applying IMQ (62.5 mg/day) on a 5 cm<sup>2</sup> shaved dorsal skin area for 7 days. PTN-NEG was topically applied, and its effects on oxidative stress, inflammatory cytokines (IL-17, TNF-α, IL-22), NF-κB pathway activation, and keratinocyte proliferation markers (Ki-67, Bcl-xL) were assessed. The expression of dual-specificity phosphatase-1 (DUSP-1) and its role in modulating mitogen-activated protein kinase (MAPK) signaling were evaluated. Additionally, DNA methyltransferase-1 (DNMT-1) inhibition was examined to explore PTN's epigenetic impact.</p><p><strong>Results: </strong>PTN-NEG restored antioxidant balance, reduced pro-inflammatory cytokines, inhibited NF-κB activation, and suppressed keratinocyte proliferation. It unregulated DUSP-1, modulating MAPK signaling and preventing psoriasis progression. PTN-NEG also improved epidermal structure, reduced hyperplasia, and prevented splenomegaly. Notably, PTN inhibited DNMT-1, suggesting a novel epigenetic mechanism for psoriasis.</p><p><strong>Conclusion: </strong>To our knowledge, this study is the first to demonstrate that PTN-NEG mitigates psoriasis through anti-inflammatory, antioxidant, and epigenetic regulatory mechanisms, highlighting its therapeutic potential in psoriasis management.</p>","PeriodicalId":74240,"journal":{"name":"Nanomedicine (London, England)","volume":" ","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine (London, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17435889.2025.2480047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: This study evaluates the therapeutic potential of Pterostilbene (PTN), a natural stilbenoid, in an imiquimod (IMQ)-induced psoriasis model. Due to PTN's poor solubility and bioavailability, a pterostilbene nano-emulsion gel (PTN-NEG) formulation (0.1% and 0.2% w/w) was developed to enhance its therapeutic efficacy.
Methods: Psoriasis was induced in C57BL/6J mice by applying IMQ (62.5 mg/day) on a 5 cm2 shaved dorsal skin area for 7 days. PTN-NEG was topically applied, and its effects on oxidative stress, inflammatory cytokines (IL-17, TNF-α, IL-22), NF-κB pathway activation, and keratinocyte proliferation markers (Ki-67, Bcl-xL) were assessed. The expression of dual-specificity phosphatase-1 (DUSP-1) and its role in modulating mitogen-activated protein kinase (MAPK) signaling were evaluated. Additionally, DNA methyltransferase-1 (DNMT-1) inhibition was examined to explore PTN's epigenetic impact.
Results: PTN-NEG restored antioxidant balance, reduced pro-inflammatory cytokines, inhibited NF-κB activation, and suppressed keratinocyte proliferation. It unregulated DUSP-1, modulating MAPK signaling and preventing psoriasis progression. PTN-NEG also improved epidermal structure, reduced hyperplasia, and prevented splenomegaly. Notably, PTN inhibited DNMT-1, suggesting a novel epigenetic mechanism for psoriasis.
Conclusion: To our knowledge, this study is the first to demonstrate that PTN-NEG mitigates psoriasis through anti-inflammatory, antioxidant, and epigenetic regulatory mechanisms, highlighting its therapeutic potential in psoriasis management.