Tiago Lopes, Pedro Costa, Paulo Cardoso, José Almeida E Silva, Etelvina Figueira
{"title":"Inducing Drought Resilience in Maize Through Encapsulated Bacteria: Physiological and Biochemical Adaptations.","authors":"Tiago Lopes, Pedro Costa, Paulo Cardoso, José Almeida E Silva, Etelvina Figueira","doi":"10.3390/plants14050812","DOIUrl":null,"url":null,"abstract":"<p><p>Droughts are projected to become prevalent throughout the 21st century, endangering agricultural productivity and global food security. To address these challenges, novel strategies to enhance water management and augment plant resilience are imperative. Bacterial encapsulation has emerged as a promising approach, offering benefits such as enhanced bacterial survival, soil compatibility, and sustainable plant growth. This study evaluated the osmotolerance of bacteria from arid environments and determined their plant growth-promoting ability in drought conditions. The encapsulation of these bacteria in bio-compatible capsules led to a substantial enhancement in the performance of maize plants under drought stress. Maize plants treated with encapsulated bacteria demonstrated a 35% increase in root biomass and a 28% enhancement in shoot growth compared to untreated controls. Furthermore, significant physiological and biochemical adaptations were observed, including a 45% increase in photosynthetic pigment concentration and higher osmolyte levels, which contributed to improved drought stress tolerance. The findings of this study demonstrate the potential of encapsulated bacteria to enhance maize resilience to drought, thereby supporting robust growth under water-limited conditions. This approach presents a sustainable strategy to improve drought tolerance, and it may reduce irrigation dependency and maintain crop yields in the face of increasing climate uncertainty.</p>","PeriodicalId":56267,"journal":{"name":"Plants-Basel","volume":"14 5","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902389/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/plants14050812","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Droughts are projected to become prevalent throughout the 21st century, endangering agricultural productivity and global food security. To address these challenges, novel strategies to enhance water management and augment plant resilience are imperative. Bacterial encapsulation has emerged as a promising approach, offering benefits such as enhanced bacterial survival, soil compatibility, and sustainable plant growth. This study evaluated the osmotolerance of bacteria from arid environments and determined their plant growth-promoting ability in drought conditions. The encapsulation of these bacteria in bio-compatible capsules led to a substantial enhancement in the performance of maize plants under drought stress. Maize plants treated with encapsulated bacteria demonstrated a 35% increase in root biomass and a 28% enhancement in shoot growth compared to untreated controls. Furthermore, significant physiological and biochemical adaptations were observed, including a 45% increase in photosynthetic pigment concentration and higher osmolyte levels, which contributed to improved drought stress tolerance. The findings of this study demonstrate the potential of encapsulated bacteria to enhance maize resilience to drought, thereby supporting robust growth under water-limited conditions. This approach presents a sustainable strategy to improve drought tolerance, and it may reduce irrigation dependency and maintain crop yields in the face of increasing climate uncertainty.
Plants-BaselAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.50
自引率
11.10%
发文量
2923
审稿时长
15.4 days
期刊介绍:
Plants (ISSN 2223-7747), is an international and multidisciplinary scientific open access journal that covers all key areas of plant science. It publishes review articles, regular research articles, communications, and short notes in the fields of structural, functional and experimental botany. In addition to fundamental disciplines such as morphology, systematics, physiology and ecology of plants, the journal welcomes all types of articles in the field of applied plant science.