Optimizing the Antimicrobial, Antioxidant, and Cytotoxic Properties of Silver Nanoparticles Synthesized from Elephantorrhiza elephantina (Burch.) Extracts: A Comprehensive Study.
Matshoene V Motene, Charity Maepa, Muendi T Sigidi
{"title":"Optimizing the Antimicrobial, Antioxidant, and Cytotoxic Properties of Silver Nanoparticles Synthesized from <i>Elephantorrhiza elephantina</i> (Burch.) Extracts: A Comprehensive Study.","authors":"Matshoene V Motene, Charity Maepa, Muendi T Sigidi","doi":"10.3390/plants14050822","DOIUrl":null,"url":null,"abstract":"<p><p>The green synthesis of silver nanoparticles (AgNPs) using <i>Elephantorrhiza elephantina</i> (Burch) bulb extracts and evaluation of their antimicrobial, cytotoxic, and antioxidant properties were investigated. The crude plant extracts were prepared using distilled water, ethanol, and methanol for a comparison. Silver nanoparticles were synthesized and characterized via UV-Visible spectroscopy (UV-VIS), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The formation of silver nanoparticles was confirmed using the UV-VIS spectra at 550 nm. The TEM confirmed the nanoparticle morphology as a mixed dispersed sphere, oval, and triangular shapes with a size range of 7.8 nm to 31.3 nm. The secondary metabolites were detected using TLC, DPPH, and LC-MS. Antimicrobial activity was assessed based on agar-well diffusion; cytotoxicity was examined through MTS assays. Various phytochemical constituents were detected through TLC and LC-MS. The crude extracts and methanol-extract-capped AgNP were able to scavenge free radicals, as shown by the developments of inhibitory bands on the TLC plate. The agar well diffusion test revealed that the AgNP capped methanol extract had potent antimicrobial activity against Gram-positive and Gram-negative multidrug resistant bacteria in comparison with penicillin and neomycin, with inhibition zones ranging between 10 mm and 14 mm for the methanol-extract-capped AgNP. The in vitro MTS assay revealed that methanol crude extracts and methanol-extract-capped AgNP had a less cytotoxic effect on the HEK293 cells in comparison with untreated cells (control). We therefore conclude that methanol was the best reducing solvent with the best overall nanoparticle morphology and performance in antimicrobial and cytotoxicity, in comparison to ethanol and distilled water.</p>","PeriodicalId":56267,"journal":{"name":"Plants-Basel","volume":"14 5","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902556/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/plants14050822","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The green synthesis of silver nanoparticles (AgNPs) using Elephantorrhiza elephantina (Burch) bulb extracts and evaluation of their antimicrobial, cytotoxic, and antioxidant properties were investigated. The crude plant extracts were prepared using distilled water, ethanol, and methanol for a comparison. Silver nanoparticles were synthesized and characterized via UV-Visible spectroscopy (UV-VIS), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The formation of silver nanoparticles was confirmed using the UV-VIS spectra at 550 nm. The TEM confirmed the nanoparticle morphology as a mixed dispersed sphere, oval, and triangular shapes with a size range of 7.8 nm to 31.3 nm. The secondary metabolites were detected using TLC, DPPH, and LC-MS. Antimicrobial activity was assessed based on agar-well diffusion; cytotoxicity was examined through MTS assays. Various phytochemical constituents were detected through TLC and LC-MS. The crude extracts and methanol-extract-capped AgNP were able to scavenge free radicals, as shown by the developments of inhibitory bands on the TLC plate. The agar well diffusion test revealed that the AgNP capped methanol extract had potent antimicrobial activity against Gram-positive and Gram-negative multidrug resistant bacteria in comparison with penicillin and neomycin, with inhibition zones ranging between 10 mm and 14 mm for the methanol-extract-capped AgNP. The in vitro MTS assay revealed that methanol crude extracts and methanol-extract-capped AgNP had a less cytotoxic effect on the HEK293 cells in comparison with untreated cells (control). We therefore conclude that methanol was the best reducing solvent with the best overall nanoparticle morphology and performance in antimicrobial and cytotoxicity, in comparison to ethanol and distilled water.
Plants-BaselAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.50
自引率
11.10%
发文量
2923
审稿时长
15.4 days
期刊介绍:
Plants (ISSN 2223-7747), is an international and multidisciplinary scientific open access journal that covers all key areas of plant science. It publishes review articles, regular research articles, communications, and short notes in the fields of structural, functional and experimental botany. In addition to fundamental disciplines such as morphology, systematics, physiology and ecology of plants, the journal welcomes all types of articles in the field of applied plant science.