Unveiling the Potential Role of Dhurrin in Sorghum During Infection by the Head Smut Pathogen Sporisorium reilianum f. sp. reilianum.

IF 4 2区 生物学 Q1 PLANT SCIENCES
Coumba Fall, Seunghyun Lim, Ezekiel Ahn, Sunchung Park, Louis K Prom, Clint W Magill
{"title":"Unveiling the Potential Role of Dhurrin in Sorghum During Infection by the Head Smut Pathogen <i>Sporisorium reilianum</i> f. sp. <i>reilianum</i>.","authors":"Coumba Fall, Seunghyun Lim, Ezekiel Ahn, Sunchung Park, Louis K Prom, Clint W Magill","doi":"10.3390/plants14050740","DOIUrl":null,"url":null,"abstract":"<p><p>The cyanogenic glucoside dhurrin is found in sorghum and has been reported for its role in defense against biotic and abiotic stresses, both involving hydrogen cyanide (HCN) release. The fungus <i>Sporisorium reilianum</i> f. sp. <i>reilianum</i> (SRS) causes sorghum head smut and the infection occurs at the seedling stage, later resulting in panicle loss. Here, the focus was to determine the role of dhurrin in sorghum's reaction against SRS infection. We investigated the genomic basis of HCN potential (HCNp) variation and its relationship with seedlings' response to SRS inoculation, along with other sorghum traits, and the expression of dhurrin biosynthetic genes in SRS-inoculated young sorghum. Genome-wide association studies (GWAS) using HCNp scores showed significant single nucleotide polymorphisms (SNPs) on chromosomes harboring the dhurrin biosynthetic and catabolic genes but not in proximity. Significant hits were also detected in or near genes encoding proteins involved in plant defense/resistance against biotic stresses. Correlation analyses showed a strong positive relationship between average HCNp scores and latent period in SRS-inoculated sorghum seedlings. RT-qPCR revealed that the dhurrin biosynthetic genes were upregulated in the leaves of the head smut resistant line BTx635 up to two days after SRS inoculation. Our results suggest the involvement of dhurrin in sorghum's protection against SRS.</p>","PeriodicalId":56267,"journal":{"name":"Plants-Basel","volume":"14 5","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901864/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/plants14050740","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The cyanogenic glucoside dhurrin is found in sorghum and has been reported for its role in defense against biotic and abiotic stresses, both involving hydrogen cyanide (HCN) release. The fungus Sporisorium reilianum f. sp. reilianum (SRS) causes sorghum head smut and the infection occurs at the seedling stage, later resulting in panicle loss. Here, the focus was to determine the role of dhurrin in sorghum's reaction against SRS infection. We investigated the genomic basis of HCN potential (HCNp) variation and its relationship with seedlings' response to SRS inoculation, along with other sorghum traits, and the expression of dhurrin biosynthetic genes in SRS-inoculated young sorghum. Genome-wide association studies (GWAS) using HCNp scores showed significant single nucleotide polymorphisms (SNPs) on chromosomes harboring the dhurrin biosynthetic and catabolic genes but not in proximity. Significant hits were also detected in or near genes encoding proteins involved in plant defense/resistance against biotic stresses. Correlation analyses showed a strong positive relationship between average HCNp scores and latent period in SRS-inoculated sorghum seedlings. RT-qPCR revealed that the dhurrin biosynthetic genes were upregulated in the leaves of the head smut resistant line BTx635 up to two days after SRS inoculation. Our results suggest the involvement of dhurrin in sorghum's protection against SRS.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plants-Basel
Plants-Basel Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.50
自引率
11.10%
发文量
2923
审稿时长
15.4 days
期刊介绍: Plants (ISSN 2223-7747), is an international and multidisciplinary scientific open access journal that covers all key areas of plant science. It publishes review articles, regular research articles, communications, and short notes in the fields of structural, functional and experimental botany. In addition to fundamental disciplines such as morphology, systematics, physiology and ecology of plants, the journal welcomes all types of articles in the field of applied plant science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信