Unveiling the Potential of Plant-Derived Diarylheptanoids and Their Derivatives in Bio-Based Polyurethane Compositions.

IF 4 2区 生物学 Q1 PLANT SCIENCES
Matiss Pals, Jevgenija Ponomarenko, Maris Lauberts, Lilija Jashina, Vilhelmine Jurkjane, Alexandr Arshanitsa
{"title":"Unveiling the Potential of Plant-Derived Diarylheptanoids and Their Derivatives in Bio-Based Polyurethane Compositions.","authors":"Matiss Pals, Jevgenija Ponomarenko, Maris Lauberts, Lilija Jashina, Vilhelmine Jurkjane, Alexandr Arshanitsa","doi":"10.3390/plants14050775","DOIUrl":null,"url":null,"abstract":"<p><p>The key challenge in polymer science is developing sustainable synthesis methods using renewable feedstocks. This study explores plant-derived diarylheptanoids with various structures as the building blocks for polyurethane (PU) materials. Diarylheptanoid glucosides isolated from black alder (<i>Alnus glutinosa</i>) bark were hydrolyzed and fractionated to remove sugar moieties. The resulting diarylheptanoids, along with unhydrolyzed analogues and curcumin, were used as biomass-based polyols to synthesize model PU films. Incorporating diarylheptanoids enhanced the mechanical strength and reduced the flexibility of PU due to increased crosslinking, with effects proportional to the OH functionality of the biomass-based polyols. Weight loss, FTIR, and Py-GC-MS/FID analyses revealed that the catechol moieties and the glucosidic bonds are biodegradable structural subunits of diarylheptanoids incorporated into PU films. Rigid polyurethane foams (PURs) incorporating high-OH-functionality diarylheptanoid glucosides such as oregonin demonstrated significantly higher compression strength and less weight loss during non-isothermal thermal analysis in air compared to those of commercial polyol-based foams. A cone calorimeter test showed that the PUR foam with diarylheptanoid derivatives had a lower degradation rate, a longer flame-burning time, 30% less heat emission, and 25% less smoke, indicating improved flame retardancy. Adding 1-2% oregonin-enriched black alder bark extracts to commercial Elastopir 1132/509/0 PUR foam significantly improved its resistance to thermal oxidative aging, outperforming the commercial antioxidant Irganox.</p>","PeriodicalId":56267,"journal":{"name":"Plants-Basel","volume":"14 5","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901723/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/plants14050775","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The key challenge in polymer science is developing sustainable synthesis methods using renewable feedstocks. This study explores plant-derived diarylheptanoids with various structures as the building blocks for polyurethane (PU) materials. Diarylheptanoid glucosides isolated from black alder (Alnus glutinosa) bark were hydrolyzed and fractionated to remove sugar moieties. The resulting diarylheptanoids, along with unhydrolyzed analogues and curcumin, were used as biomass-based polyols to synthesize model PU films. Incorporating diarylheptanoids enhanced the mechanical strength and reduced the flexibility of PU due to increased crosslinking, with effects proportional to the OH functionality of the biomass-based polyols. Weight loss, FTIR, and Py-GC-MS/FID analyses revealed that the catechol moieties and the glucosidic bonds are biodegradable structural subunits of diarylheptanoids incorporated into PU films. Rigid polyurethane foams (PURs) incorporating high-OH-functionality diarylheptanoid glucosides such as oregonin demonstrated significantly higher compression strength and less weight loss during non-isothermal thermal analysis in air compared to those of commercial polyol-based foams. A cone calorimeter test showed that the PUR foam with diarylheptanoid derivatives had a lower degradation rate, a longer flame-burning time, 30% less heat emission, and 25% less smoke, indicating improved flame retardancy. Adding 1-2% oregonin-enriched black alder bark extracts to commercial Elastopir 1132/509/0 PUR foam significantly improved its resistance to thermal oxidative aging, outperforming the commercial antioxidant Irganox.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plants-Basel
Plants-Basel Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.50
自引率
11.10%
发文量
2923
审稿时长
15.4 days
期刊介绍: Plants (ISSN 2223-7747), is an international and multidisciplinary scientific open access journal that covers all key areas of plant science. It publishes review articles, regular research articles, communications, and short notes in the fields of structural, functional and experimental botany. In addition to fundamental disciplines such as morphology, systematics, physiology and ecology of plants, the journal welcomes all types of articles in the field of applied plant science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信