Genetic Analysis and Fine Mapping of Spontaneously Mutated Male Sterility Gene in Chinese Cabbage (Brassica rapa L. ssp. pekinensis).

IF 4 2区 生物学 Q1 PLANT SCIENCES
Qian Xu, Xiaochun Wei, Yanyan Zhao, Jianqi Feng, Peiyun Wang, Cong Ding, Wenjing Zhang, Henan Su, Weiwei Chen, Fang Wei, Yuxiang Yuan, Xiaowei Zhang
{"title":"Genetic Analysis and Fine Mapping of Spontaneously Mutated Male Sterility Gene in Chinese Cabbage (<i>Brassica rapa</i> L. ssp. <i>pekinensis</i>).","authors":"Qian Xu, Xiaochun Wei, Yanyan Zhao, Jianqi Feng, Peiyun Wang, Cong Ding, Wenjing Zhang, Henan Su, Weiwei Chen, Fang Wei, Yuxiang Yuan, Xiaowei Zhang","doi":"10.3390/plants14050779","DOIUrl":null,"url":null,"abstract":"<p><p>Chinese cabbage (<i>Brassica rapa</i> L. ssp. <i>pekinensis</i>), an important traditional vegetable indigenous to China, is a typical cross-pollinated Brassica crop exhibiting pronounced heterosis. However, its small flower organs make artificial pollination for hybrid seed production highly challenging. The use of male-sterile lines has emerged as a crucial approach in hybrid seed production. Therefore, understanding the genetic and molecular mechanisms underlying male sterility in Chinese cabbage holds profound theoretical and economic importance and is pivotal for advancing Chinese cabbage crossbreeding. Here, cytological comparative analysis of anthers from sterile line 366-2S and fertile line 366-2F revealed abnormalities in 366-2S during the late tetrad stage, including delayed tapetum degradation and the aggregation of tetrad microspores without separation, which prevented pollen production and caused male sterility. Construction of the F<sub>2</sub> segregating population, with 366-2S as the female parent and genetically diverse fertile material Y636-9 as the male parent, indicated that male sterility in 366-2S is controlled by a single recessive gene. Using bulked segregant analysis sequencing and kompetitive allele-specific polymerase chain reaction (KASP) technology, the sterile gene was mapped to 65 kb between the PA11 and PA13 markers, with 11 genes in the candidate region. Functional annotation, expression, and sequence variation analyses identified <i>BraA09g012710.3C</i>, encoding acyl-CoA synthetase 5, as a candidate gene for 366-2S male sterility. Quantitative real-time polymerase chain reaction analysis revealed minimal expression of <i>BraA09g012710.3C</i> in 366-2S but high expression in the flower buds of 366-2F. Further analysis of candidate gene DNA sequences identified a large deletion encompassing <i>BraA09g012710.3C</i>, <i>BraA09g012720.3C</i>, <i>BraA09g012730.3C</i>, and <i>BraA09g012740.3C</i> in sterile line 366-2S (A09: 7452347-7479709). Cloning and verification of the other three deleted genes in the F<sub>2</sub> population via agarose gel electrophoresis confirmed their presence in F<sub>2</sub> sterile individuals, indicating that their deletion was not associated with male sterility, underscoring <i>BraA09g012710.3C</i> as the key gene driving male sterility in 366-2S.</p>","PeriodicalId":56267,"journal":{"name":"Plants-Basel","volume":"14 5","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902244/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/plants14050779","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Chinese cabbage (Brassica rapa L. ssp. pekinensis), an important traditional vegetable indigenous to China, is a typical cross-pollinated Brassica crop exhibiting pronounced heterosis. However, its small flower organs make artificial pollination for hybrid seed production highly challenging. The use of male-sterile lines has emerged as a crucial approach in hybrid seed production. Therefore, understanding the genetic and molecular mechanisms underlying male sterility in Chinese cabbage holds profound theoretical and economic importance and is pivotal for advancing Chinese cabbage crossbreeding. Here, cytological comparative analysis of anthers from sterile line 366-2S and fertile line 366-2F revealed abnormalities in 366-2S during the late tetrad stage, including delayed tapetum degradation and the aggregation of tetrad microspores without separation, which prevented pollen production and caused male sterility. Construction of the F2 segregating population, with 366-2S as the female parent and genetically diverse fertile material Y636-9 as the male parent, indicated that male sterility in 366-2S is controlled by a single recessive gene. Using bulked segregant analysis sequencing and kompetitive allele-specific polymerase chain reaction (KASP) technology, the sterile gene was mapped to 65 kb between the PA11 and PA13 markers, with 11 genes in the candidate region. Functional annotation, expression, and sequence variation analyses identified BraA09g012710.3C, encoding acyl-CoA synthetase 5, as a candidate gene for 366-2S male sterility. Quantitative real-time polymerase chain reaction analysis revealed minimal expression of BraA09g012710.3C in 366-2S but high expression in the flower buds of 366-2F. Further analysis of candidate gene DNA sequences identified a large deletion encompassing BraA09g012710.3C, BraA09g012720.3C, BraA09g012730.3C, and BraA09g012740.3C in sterile line 366-2S (A09: 7452347-7479709). Cloning and verification of the other three deleted genes in the F2 population via agarose gel electrophoresis confirmed their presence in F2 sterile individuals, indicating that their deletion was not associated with male sterility, underscoring BraA09g012710.3C as the key gene driving male sterility in 366-2S.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plants-Basel
Plants-Basel Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.50
自引率
11.10%
发文量
2923
审稿时长
15.4 days
期刊介绍: Plants (ISSN 2223-7747), is an international and multidisciplinary scientific open access journal that covers all key areas of plant science. It publishes review articles, regular research articles, communications, and short notes in the fields of structural, functional and experimental botany. In addition to fundamental disciplines such as morphology, systematics, physiology and ecology of plants, the journal welcomes all types of articles in the field of applied plant science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信