Bioinformatics and Expression Analysis of CHI Gene Family in Sweet Potato.

IF 4 2区 生物学 Q1 PLANT SCIENCES
Yaqin Wu, Xiaojie Jin, Lianjun Wang, Chong Wang, Jian Lei, Shasha Chai, Wenying Zhang, Xinsun Yang, Rui Pan
{"title":"Bioinformatics and Expression Analysis of CHI Gene Family in Sweet Potato.","authors":"Yaqin Wu, Xiaojie Jin, Lianjun Wang, Chong Wang, Jian Lei, Shasha Chai, Wenying Zhang, Xinsun Yang, Rui Pan","doi":"10.3390/plants14050752","DOIUrl":null,"url":null,"abstract":"<p><p>Chalcone isomerase (CHI) is not only an enzyme related to flavonoid biosynthesis, but also one of the key enzymes in the flavonoid metabolic pathway. In this study, members of the CHI gene family were identified in the whole genome of sweet potato. Bioinformatics methods were used to analyze the physical and chemical properties, systematic evolution, conserved domain, chromosome location, cis-acting elements of the promoter, and so on, of CHI gene family members. In addition, the tissue site-specific expression of CHI gene family members and their expression patterns under three kinds of abiotic stress were analyzed. The results showed that five members of IbCHI gene family were identified in sweet potato, which were unevenly distributed on four chromosomes. The protein secondary structure and tertiary structure were consistent, and there was a conservative domain related to chalcone isomerase. The prediction of subcellular localization showed that it was mainly located in cytoplasm and chloroplast. Systematic evolution showed that the members of sweet potato CHI gene family could be divided into Type I-IV, and the Type I gene <i>IbCHI1</i> showed CHI catalytic activity in transgenic callus. The collinearity gene pairs were identified between sweet potato and allied species. Its promoter contains light response elements, hormone response elements, and stress response elements. The results of real-time fluorescence quantitative PCR (qRT-PCR) analysis showed that the expression of the IbCHI gene was tissue-specific and that the catalytic genes <i>IbCHI1</i> and <i>IbCHI5</i> serve as primary responders to abiotic stress, while the non-catalytic members <i>IbCHI3</i> and <i>IbCHI4</i> may fine-tune metabolic flux or participate in low-temperature, salt, and drought stress signaling. This study can provide a theoretical basis for a follow-up functional genomics study of the chalcone isomerase gene family in sweet potato.</p>","PeriodicalId":56267,"journal":{"name":"Plants-Basel","volume":"14 5","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902207/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/plants14050752","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Chalcone isomerase (CHI) is not only an enzyme related to flavonoid biosynthesis, but also one of the key enzymes in the flavonoid metabolic pathway. In this study, members of the CHI gene family were identified in the whole genome of sweet potato. Bioinformatics methods were used to analyze the physical and chemical properties, systematic evolution, conserved domain, chromosome location, cis-acting elements of the promoter, and so on, of CHI gene family members. In addition, the tissue site-specific expression of CHI gene family members and their expression patterns under three kinds of abiotic stress were analyzed. The results showed that five members of IbCHI gene family were identified in sweet potato, which were unevenly distributed on four chromosomes. The protein secondary structure and tertiary structure were consistent, and there was a conservative domain related to chalcone isomerase. The prediction of subcellular localization showed that it was mainly located in cytoplasm and chloroplast. Systematic evolution showed that the members of sweet potato CHI gene family could be divided into Type I-IV, and the Type I gene IbCHI1 showed CHI catalytic activity in transgenic callus. The collinearity gene pairs were identified between sweet potato and allied species. Its promoter contains light response elements, hormone response elements, and stress response elements. The results of real-time fluorescence quantitative PCR (qRT-PCR) analysis showed that the expression of the IbCHI gene was tissue-specific and that the catalytic genes IbCHI1 and IbCHI5 serve as primary responders to abiotic stress, while the non-catalytic members IbCHI3 and IbCHI4 may fine-tune metabolic flux or participate in low-temperature, salt, and drought stress signaling. This study can provide a theoretical basis for a follow-up functional genomics study of the chalcone isomerase gene family in sweet potato.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plants-Basel
Plants-Basel Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.50
自引率
11.10%
发文量
2923
审稿时长
15.4 days
期刊介绍: Plants (ISSN 2223-7747), is an international and multidisciplinary scientific open access journal that covers all key areas of plant science. It publishes review articles, regular research articles, communications, and short notes in the fields of structural, functional and experimental botany. In addition to fundamental disciplines such as morphology, systematics, physiology and ecology of plants, the journal welcomes all types of articles in the field of applied plant science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信