Trajče Stafilov, Katerina Bačeva Andonovska, Robert Šajn, Marija Jeftimova
{"title":"Assessing the Distribution of Potentially Toxic Elements in Bryophytes in Relation to Surface Soil Contamination in the Veles Region, North Macedonia.","authors":"Trajče Stafilov, Katerina Bačeva Andonovska, Robert Šajn, Marija Jeftimova","doi":"10.3390/plants14050783","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the relationship between bryophyte (mosses) diversity and environmental factors in the Veles region, North Macedonia, focusing on the spatial distribution of chemical elements in the moss and surface soil samples collected from the same locations. Eighteen moss samples were analyzed alongside surface soils. Advanced spectrometric techniques were used to identify potentially toxic elements (PTEs) and their links to anthropogenic and natural sources. While metal measurements are widely reported in the literature, the novelty of this study lies in its integrative approach, combining moss biodiversity analysis with a direct comparison of element concentrations in both moss and soil. The results show significant patterns of deposition of PTEs and highlight the long-term impact of industrial activities on biodiversity and air pollution. These findings provide valuable insights into conservation strategies and environmental management in the midst of ongoing ecological change. Five groups of elements were separated using factor analysis: G1 (Al, Cr, Cu, Fe, Li, Mg, Mn, Ni and V); G2 (Ba and Na); G3 (K, P and Mo), G4 (Pb and Zn), and G5 (Ag, As and Cd), of which two groups (G1 and G2) were found to be typical geochemical associations, while G4 and G5 are anthropogenic associations due to the emission of dust from contaminated soils and the slag heap of the Pb-Zn smelting plant. Group 3 represents a mixed geochemical and anthropogenic association. It was found that Pb, Zn, Cd, and As could indeed be detected in the moss in the study area, underlining its ability to detect pollutants in the air. A comparative analysis of moss and soil samples revealed significant differences in element concentrations, with most elements being more concentrated in soil. These results underline the role of moss as a bioindicator of atmospheric deposition, detecting pollution trends rather than direct soil contamination.</p>","PeriodicalId":56267,"journal":{"name":"Plants-Basel","volume":"14 5","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901712/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/plants14050783","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the relationship between bryophyte (mosses) diversity and environmental factors in the Veles region, North Macedonia, focusing on the spatial distribution of chemical elements in the moss and surface soil samples collected from the same locations. Eighteen moss samples were analyzed alongside surface soils. Advanced spectrometric techniques were used to identify potentially toxic elements (PTEs) and their links to anthropogenic and natural sources. While metal measurements are widely reported in the literature, the novelty of this study lies in its integrative approach, combining moss biodiversity analysis with a direct comparison of element concentrations in both moss and soil. The results show significant patterns of deposition of PTEs and highlight the long-term impact of industrial activities on biodiversity and air pollution. These findings provide valuable insights into conservation strategies and environmental management in the midst of ongoing ecological change. Five groups of elements were separated using factor analysis: G1 (Al, Cr, Cu, Fe, Li, Mg, Mn, Ni and V); G2 (Ba and Na); G3 (K, P and Mo), G4 (Pb and Zn), and G5 (Ag, As and Cd), of which two groups (G1 and G2) were found to be typical geochemical associations, while G4 and G5 are anthropogenic associations due to the emission of dust from contaminated soils and the slag heap of the Pb-Zn smelting plant. Group 3 represents a mixed geochemical and anthropogenic association. It was found that Pb, Zn, Cd, and As could indeed be detected in the moss in the study area, underlining its ability to detect pollutants in the air. A comparative analysis of moss and soil samples revealed significant differences in element concentrations, with most elements being more concentrated in soil. These results underline the role of moss as a bioindicator of atmospheric deposition, detecting pollution trends rather than direct soil contamination.
Plants-BaselAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.50
自引率
11.10%
发文量
2923
审稿时长
15.4 days
期刊介绍:
Plants (ISSN 2223-7747), is an international and multidisciplinary scientific open access journal that covers all key areas of plant science. It publishes review articles, regular research articles, communications, and short notes in the fields of structural, functional and experimental botany. In addition to fundamental disciplines such as morphology, systematics, physiology and ecology of plants, the journal welcomes all types of articles in the field of applied plant science.