{"title":"An Efficient Model for Leafy Vegetable Disease Detection and Segmentation Based on Few-Shot Learning Framework and Prototype Attention Mechanism.","authors":"Tong Hai, Yuxin Shao, Xiyan Zhang, Guangqi Yuan, Ruihao Jia, Zhengjie Fu, Xiaohan Wu, Xinjin Ge, Yihong Song, Min Dong, Shuo Yan","doi":"10.3390/plants14050760","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes a model for leafy vegetable disease detection and segmentation based on a few-shot learning framework and a prototype attention mechanism, with the aim of addressing the challenges of complex backgrounds and few-shot problems. Experimental results show that the proposed method performs excellently in both object detection and semantic segmentation tasks. In the object detection task, the model achieves a precision of 0.93, recall of 0.90, accuracy of 0.91, mAP@50 of 0.91, and mAP@75 of 0.90. In the semantic segmentation task, the precision is 0.95, recall is 0.92, accuracy is 0.93, mAP@50 is 0.92, and mAP@75 is 0.92. These results show that the proposed method significantly outperforms the traditional methods, such as YOLOv10 and TinySegformer, validating the advantages of the prototype attention mechanism in enhancing model robustness and fine-grained feature expression. Furthermore, the prototype loss function, which optimizes the distance relationship between samples and category prototypes, significantly improves the model's ability to discriminate between categories. The proposed method shows great potential in agricultural disease detection, particularly in scenarios with few samples and complex backgrounds, offering broad application prospects.</p>","PeriodicalId":56267,"journal":{"name":"Plants-Basel","volume":"14 5","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902100/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/plants14050760","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a model for leafy vegetable disease detection and segmentation based on a few-shot learning framework and a prototype attention mechanism, with the aim of addressing the challenges of complex backgrounds and few-shot problems. Experimental results show that the proposed method performs excellently in both object detection and semantic segmentation tasks. In the object detection task, the model achieves a precision of 0.93, recall of 0.90, accuracy of 0.91, mAP@50 of 0.91, and mAP@75 of 0.90. In the semantic segmentation task, the precision is 0.95, recall is 0.92, accuracy is 0.93, mAP@50 is 0.92, and mAP@75 is 0.92. These results show that the proposed method significantly outperforms the traditional methods, such as YOLOv10 and TinySegformer, validating the advantages of the prototype attention mechanism in enhancing model robustness and fine-grained feature expression. Furthermore, the prototype loss function, which optimizes the distance relationship between samples and category prototypes, significantly improves the model's ability to discriminate between categories. The proposed method shows great potential in agricultural disease detection, particularly in scenarios with few samples and complex backgrounds, offering broad application prospects.
Plants-BaselAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.50
自引率
11.10%
发文量
2923
审稿时长
15.4 days
期刊介绍:
Plants (ISSN 2223-7747), is an international and multidisciplinary scientific open access journal that covers all key areas of plant science. It publishes review articles, regular research articles, communications, and short notes in the fields of structural, functional and experimental botany. In addition to fundamental disciplines such as morphology, systematics, physiology and ecology of plants, the journal welcomes all types of articles in the field of applied plant science.