{"title":"Allelic Expression Dynamics of Regulatory Factors During Embryogenic Callus Induction in ABB Banana (<i>Musa</i> spp. cv. Bengal, ABB Group).","authors":"Xiaobing Zhao, Yiting Zhuang, Wangyang Xie, Yixin Yang, Jingyu Pu, Zhengyang Fan, Yukun Chen, Yuling Lin, Zhongxiong Lai","doi":"10.3390/plants14050761","DOIUrl":null,"url":null,"abstract":"<p><p>The regulatory mechanisms underlying embryogenic callus (EC) formation in polyploid bananas remain unexplored, posing challenges for genetic transformation and biotechnological applications. Here, we conducted transcriptome sequencing on cultured explants, non-embryogenic callus, EC, and browning callus in the ABB cultivar 'MJ' (<i>Musa</i> spp. cv. Bengal). Our analysis of differentially expressed genes (DEGs) revealed significant enrichment in plant hormones, MAPK, and zeatin biosynthesis pathways. Notably, most genes in the MJ variety exhibited balanced expression of the A and B alleles, but A-specific allele expression was dominant in the key signaling pathways, whereas B-specific allele expression was very rare during EC induction. In the auxin signaling pathway, six A-specific <i>MJARF</i> genes were markedly downregulated, underscoring their critical roles in the negative regulation of callus formation. Additionally, six A-specific <i>MJEIN3</i> alleles were found to play negative regulatory roles in ethylene signaling during EC development. We also identified phenylpropanoids responsible for enzymatic browning. Furthermore, the expression patterns of transcription factors in bananas exhibited specific expression modes, highlighting the unique mechanisms of callus formation. This study enhanced our understanding of the regulatory roles of these alleles in EC induction and offers new insights into the utilization of alleles to improve the efficiency of somatic embryogenesis in bananas.</p>","PeriodicalId":56267,"journal":{"name":"Plants-Basel","volume":"14 5","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902074/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/plants14050761","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The regulatory mechanisms underlying embryogenic callus (EC) formation in polyploid bananas remain unexplored, posing challenges for genetic transformation and biotechnological applications. Here, we conducted transcriptome sequencing on cultured explants, non-embryogenic callus, EC, and browning callus in the ABB cultivar 'MJ' (Musa spp. cv. Bengal). Our analysis of differentially expressed genes (DEGs) revealed significant enrichment in plant hormones, MAPK, and zeatin biosynthesis pathways. Notably, most genes in the MJ variety exhibited balanced expression of the A and B alleles, but A-specific allele expression was dominant in the key signaling pathways, whereas B-specific allele expression was very rare during EC induction. In the auxin signaling pathway, six A-specific MJARF genes were markedly downregulated, underscoring their critical roles in the negative regulation of callus formation. Additionally, six A-specific MJEIN3 alleles were found to play negative regulatory roles in ethylene signaling during EC development. We also identified phenylpropanoids responsible for enzymatic browning. Furthermore, the expression patterns of transcription factors in bananas exhibited specific expression modes, highlighting the unique mechanisms of callus formation. This study enhanced our understanding of the regulatory roles of these alleles in EC induction and offers new insights into the utilization of alleles to improve the efficiency of somatic embryogenesis in bananas.
Plants-BaselAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.50
自引率
11.10%
发文量
2923
审稿时长
15.4 days
期刊介绍:
Plants (ISSN 2223-7747), is an international and multidisciplinary scientific open access journal that covers all key areas of plant science. It publishes review articles, regular research articles, communications, and short notes in the fields of structural, functional and experimental botany. In addition to fundamental disciplines such as morphology, systematics, physiology and ecology of plants, the journal welcomes all types of articles in the field of applied plant science.