{"title":"Dynamic Monitoring of <i>Chilo suppressalis</i> Resistance to Insecticides and the Potential Influencing Factors.","authors":"Wujia Mo, Qiang Li, Zhongxian Lu, Farman Ullah, Jiawen Guo, Hongxing Xu, Yanhui Lu","doi":"10.3390/plants14050724","DOIUrl":null,"url":null,"abstract":"<p><p><i>Chilo suppressalis</i> is one of the most important rice pests worldwide, and chlorantraniliprole, abamectin, and methoxyfenozide have been widely used to control this pest in China. However, the control efficiency in the field has dramatically decreased in recent years. Therefore, assessing the impacts of different factors on <i>C. suppressalis</i> resistance is essential for maintaining control effectiveness and managing resistant populations. Herein, we investigated insecticide resistance and its potential influencing factors (biotic and abiotic factors) in <i>C. suppressalis</i> field populations, using bioassays and biochemical and molecular diagnostic approaches. The results showed that the resistance levels of most field populations of <i>C. suppressalis</i> have evolved to moderate-to-high levels to the tested insecticides. The toxicity correlation analysis indicated that there was a significant positive correlation between the resistance levels of abamectin and methoxyfenozide, whereas GST activity was positively correlated with abamectin and methoxyfenozide resistance in <i>C. suppressalis</i>. EST and P450 activities showed significantly positive correlation with the resistance of chlorantraniliprole and methoxyfenozide, while the increase in temperature enhanced EST enzyme activity and was positively correlated with the evolution of resistance to methoxyfenozide. Overall, our study provides a systematic understanding of the dynamic resistance status and its influencing factors of <i>C. suppressalis</i> to insecticides. These findings will help clarify the resistance levels and the influencing factors in the resistance development of <i>C. suppressalis</i>, providing a theoretical basis for the resistance management of this insect species.</p>","PeriodicalId":56267,"journal":{"name":"Plants-Basel","volume":"14 5","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901930/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/plants14050724","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Chilo suppressalis is one of the most important rice pests worldwide, and chlorantraniliprole, abamectin, and methoxyfenozide have been widely used to control this pest in China. However, the control efficiency in the field has dramatically decreased in recent years. Therefore, assessing the impacts of different factors on C. suppressalis resistance is essential for maintaining control effectiveness and managing resistant populations. Herein, we investigated insecticide resistance and its potential influencing factors (biotic and abiotic factors) in C. suppressalis field populations, using bioassays and biochemical and molecular diagnostic approaches. The results showed that the resistance levels of most field populations of C. suppressalis have evolved to moderate-to-high levels to the tested insecticides. The toxicity correlation analysis indicated that there was a significant positive correlation between the resistance levels of abamectin and methoxyfenozide, whereas GST activity was positively correlated with abamectin and methoxyfenozide resistance in C. suppressalis. EST and P450 activities showed significantly positive correlation with the resistance of chlorantraniliprole and methoxyfenozide, while the increase in temperature enhanced EST enzyme activity and was positively correlated with the evolution of resistance to methoxyfenozide. Overall, our study provides a systematic understanding of the dynamic resistance status and its influencing factors of C. suppressalis to insecticides. These findings will help clarify the resistance levels and the influencing factors in the resistance development of C. suppressalis, providing a theoretical basis for the resistance management of this insect species.
Plants-BaselAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.50
自引率
11.10%
发文量
2923
审稿时长
15.4 days
期刊介绍:
Plants (ISSN 2223-7747), is an international and multidisciplinary scientific open access journal that covers all key areas of plant science. It publishes review articles, regular research articles, communications, and short notes in the fields of structural, functional and experimental botany. In addition to fundamental disciplines such as morphology, systematics, physiology and ecology of plants, the journal welcomes all types of articles in the field of applied plant science.