Effect of Temperature and Covering Structures in Seed Dormancy and Germination Traits of Manchurian Striped Maple (Acer tegmentosum Maxim.) Native to Northeast Asia.

IF 4 2区 生物学 Q1 PLANT SCIENCES
Sieun Kim, Chung Ho Ko, Hak Cheol Kwon, Yong Ha Rhie, Seung Youn Lee
{"title":"Effect of Temperature and Covering Structures in Seed Dormancy and Germination Traits of Manchurian Striped Maple (<i>Acer tegmentosum</i> Maxim.) Native to Northeast Asia.","authors":"Sieun Kim, Chung Ho Ko, Hak Cheol Kwon, Yong Ha Rhie, Seung Youn Lee","doi":"10.3390/plants14050767","DOIUrl":null,"url":null,"abstract":"<p><p><i>Acer tegmentosum</i>, an indigenous medicinal plant under threat from overexploitation, is a deciduous tree species native to Northeast China, southern regions of the Russian Far East, and Korea. In this study, we analyzed the characteristics of samaras (single-seeded fruit) of <i>A. tegmentosum</i> to determine the type of seed dormancy as well as to identify the factors responsible for dormancy release. We identified the seed dormancy to be that of deep physiological dormancy (PD). PD can be combined with mechanical resistance of the seed coat, which limits the protrusion of the radicle during germination. We observed that mechanical resistance exhibited by the water-permeable testa is associated with PD of <i>A. tegmentosum</i>. This was previously attributed to seed dormancy in <i>Acer</i> as testa-imposed dormancy or embryo dormancy. In <i>A. tegmentosum</i>, PD and mechanical resistance of the testa were overcome through cold stratification treatment at 1 and 4 °C, which was similar to winter duration under natural conditions. The pericarp of samaras facilitated germination at an early spring temperature (15/6 °C) after cold stratification at 1 and 4 °C, enabling the seedling survival of <i>A. tegmentosum</i>. We concluded that the covering structures composed of testa and pericarp in <i>A. tegmentosum</i> play vital roles in dormancy release and subsequent seed germination; they respond to external environmental cues based on the climatic conditions of Northeast Asia. This adaptation probably determines their behavior at an early life stage in response to environmental factors.</p>","PeriodicalId":56267,"journal":{"name":"Plants-Basel","volume":"14 5","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901605/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/plants14050767","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Acer tegmentosum, an indigenous medicinal plant under threat from overexploitation, is a deciduous tree species native to Northeast China, southern regions of the Russian Far East, and Korea. In this study, we analyzed the characteristics of samaras (single-seeded fruit) of A. tegmentosum to determine the type of seed dormancy as well as to identify the factors responsible for dormancy release. We identified the seed dormancy to be that of deep physiological dormancy (PD). PD can be combined with mechanical resistance of the seed coat, which limits the protrusion of the radicle during germination. We observed that mechanical resistance exhibited by the water-permeable testa is associated with PD of A. tegmentosum. This was previously attributed to seed dormancy in Acer as testa-imposed dormancy or embryo dormancy. In A. tegmentosum, PD and mechanical resistance of the testa were overcome through cold stratification treatment at 1 and 4 °C, which was similar to winter duration under natural conditions. The pericarp of samaras facilitated germination at an early spring temperature (15/6 °C) after cold stratification at 1 and 4 °C, enabling the seedling survival of A. tegmentosum. We concluded that the covering structures composed of testa and pericarp in A. tegmentosum play vital roles in dormancy release and subsequent seed germination; they respond to external environmental cues based on the climatic conditions of Northeast Asia. This adaptation probably determines their behavior at an early life stage in response to environmental factors.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plants-Basel
Plants-Basel Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.50
自引率
11.10%
发文量
2923
审稿时长
15.4 days
期刊介绍: Plants (ISSN 2223-7747), is an international and multidisciplinary scientific open access journal that covers all key areas of plant science. It publishes review articles, regular research articles, communications, and short notes in the fields of structural, functional and experimental botany. In addition to fundamental disciplines such as morphology, systematics, physiology and ecology of plants, the journal welcomes all types of articles in the field of applied plant science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信