Cultivars and Their Developmental Phases Interact with Temperature Fluctuations to Modulate Growth, Productivity and Seed Tuber Physiology of Potatoes (Solanum tuberosum L.).

IF 4 2区 生物学 Q1 PLANT SCIENCES
Morgan D Southern, Mohan G N Kumar, Jacob M Blauer
{"title":"Cultivars and Their Developmental Phases Interact with Temperature Fluctuations to Modulate Growth, Productivity and Seed Tuber Physiology of Potatoes (<i>Solanum tuberosum</i> L.).","authors":"Morgan D Southern, Mohan G N Kumar, Jacob M Blauer","doi":"10.3390/plants14050750","DOIUrl":null,"url":null,"abstract":"<p><p>In view of raising concerns of climate change, the impact of temperature on potato (<i>Solanum tuberosum</i> L.) growth and productivity was investigated by planting at different times to expose plants to natural variations in air and soil temperatures. Over two seasons with differing temperature patterns, emergence, stem and tuber numbers, tuber size distribution, yield, processing quality, and seed tuber behavior were analyzed. Postharvest, tubers from each planting were stored and replanted to assess temperature carryover effects. Generally, delayed plantings increased the average number of stems per plant (37%) but did not alter the tuber numbers per plant. Early (18 April) and mid-season (9 May) plantings produced higher yields, while late planting (30 May) reduced total yield (42%), US No. 1 yield (48%), and tuber numbers (34%). Moreover, the storage period influenced subsequent stems per plant more than the prior-year temperature conditions. Optimal productivity was achieved by planting during cooler establishment temperatures, followed by warmer tuberization and relatively cooler bulking temperatures. Diurnal temperature variations and growing degree days had minimal effects on stems per plant, whereas storage duration (chronological age) and temperature significantly impacted physiological aging. These findings help growers optimize planting times to enhance tuber storability and yield to improve end use.</p>","PeriodicalId":56267,"journal":{"name":"Plants-Basel","volume":"14 5","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901846/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/plants14050750","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In view of raising concerns of climate change, the impact of temperature on potato (Solanum tuberosum L.) growth and productivity was investigated by planting at different times to expose plants to natural variations in air and soil temperatures. Over two seasons with differing temperature patterns, emergence, stem and tuber numbers, tuber size distribution, yield, processing quality, and seed tuber behavior were analyzed. Postharvest, tubers from each planting were stored and replanted to assess temperature carryover effects. Generally, delayed plantings increased the average number of stems per plant (37%) but did not alter the tuber numbers per plant. Early (18 April) and mid-season (9 May) plantings produced higher yields, while late planting (30 May) reduced total yield (42%), US No. 1 yield (48%), and tuber numbers (34%). Moreover, the storage period influenced subsequent stems per plant more than the prior-year temperature conditions. Optimal productivity was achieved by planting during cooler establishment temperatures, followed by warmer tuberization and relatively cooler bulking temperatures. Diurnal temperature variations and growing degree days had minimal effects on stems per plant, whereas storage duration (chronological age) and temperature significantly impacted physiological aging. These findings help growers optimize planting times to enhance tuber storability and yield to improve end use.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plants-Basel
Plants-Basel Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.50
自引率
11.10%
发文量
2923
审稿时长
15.4 days
期刊介绍: Plants (ISSN 2223-7747), is an international and multidisciplinary scientific open access journal that covers all key areas of plant science. It publishes review articles, regular research articles, communications, and short notes in the fields of structural, functional and experimental botany. In addition to fundamental disciplines such as morphology, systematics, physiology and ecology of plants, the journal welcomes all types of articles in the field of applied plant science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信