Copper Sulfate Elicitation Effect on Biomass Production, Phenolic Compounds Accumulation, and Antioxidant Activity of Morus nigra L. Stem Node Culture.

IF 4 2区 生物学 Q1 PLANT SCIENCES
Jan Senekovič, Špela Jelen, Andreja Urbanek Krajnc
{"title":"Copper Sulfate Elicitation Effect on Biomass Production, Phenolic Compounds Accumulation, and Antioxidant Activity of <i>Morus nigra</i> L. Stem Node Culture.","authors":"Jan Senekovič, Špela Jelen, Andreja Urbanek Krajnc","doi":"10.3390/plants14050766","DOIUrl":null,"url":null,"abstract":"<p><p>Phenolic compounds are strong antioxidant and antibacterial agents with great pharmacological, medicinal, nutritional, and industrial value. The potential of <i>Morus nigra</i> in stem node culture was investigated for the production of phenolic compounds and their elicitation with CuSO<sub>4</sub>. Individual phenolic compounds in the samples were identified and quantified by using HPLC-PDA and HPLC-MS methods, while the content of total phenolic compounds, the content of total flavonoids, and the antioxidant activity of methanolic extracts were evaluated spectrophotometrically. The highest fresh and dry weights were obtained in plantlets treated with 0.5 mM CuSO<sub>4</sub> for 42 days. The highest total phenolic content, total flavonoid content, and antioxidant activity of the extracts were determined in stem node cultures treated with 3 mM CuSO<sub>4</sub> for 42 days. Under the latter conditions, the predominant representatives of the caffeoylquinic acids, <i>p</i>-coumaric acid derivatives, kaempferol derivatives, and quercetin derivatives also achieved the highest content. The most abundant phenolic compound in all samples was the chlorogenic acid. The nodal culture of <i>M. nigra</i> elicited with CuSO<sub>4</sub> could potentially be used for the industrial production of phenolic compounds, especially caffeoylquinic acids. Moreover, considering the biochemical response to CuSO<sub>4</sub> treatment and the ability to tolerate and accumulate copper, the potential application of <i>M. nigra</i> in phytoremediation is also highlighted.</p>","PeriodicalId":56267,"journal":{"name":"Plants-Basel","volume":"14 5","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901489/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/plants14050766","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Phenolic compounds are strong antioxidant and antibacterial agents with great pharmacological, medicinal, nutritional, and industrial value. The potential of Morus nigra in stem node culture was investigated for the production of phenolic compounds and their elicitation with CuSO4. Individual phenolic compounds in the samples were identified and quantified by using HPLC-PDA and HPLC-MS methods, while the content of total phenolic compounds, the content of total flavonoids, and the antioxidant activity of methanolic extracts were evaluated spectrophotometrically. The highest fresh and dry weights were obtained in plantlets treated with 0.5 mM CuSO4 for 42 days. The highest total phenolic content, total flavonoid content, and antioxidant activity of the extracts were determined in stem node cultures treated with 3 mM CuSO4 for 42 days. Under the latter conditions, the predominant representatives of the caffeoylquinic acids, p-coumaric acid derivatives, kaempferol derivatives, and quercetin derivatives also achieved the highest content. The most abundant phenolic compound in all samples was the chlorogenic acid. The nodal culture of M. nigra elicited with CuSO4 could potentially be used for the industrial production of phenolic compounds, especially caffeoylquinic acids. Moreover, considering the biochemical response to CuSO4 treatment and the ability to tolerate and accumulate copper, the potential application of M. nigra in phytoremediation is also highlighted.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plants-Basel
Plants-Basel Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.50
自引率
11.10%
发文量
2923
审稿时长
15.4 days
期刊介绍: Plants (ISSN 2223-7747), is an international and multidisciplinary scientific open access journal that covers all key areas of plant science. It publishes review articles, regular research articles, communications, and short notes in the fields of structural, functional and experimental botany. In addition to fundamental disciplines such as morphology, systematics, physiology and ecology of plants, the journal welcomes all types of articles in the field of applied plant science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信