Function of Anthocyanin and Chlorophyll Metabolic Pathways in the Floral Sepals Color Formation in Different Hydrangea Cultivars.

IF 4 2区 生物学 Q1 PLANT SCIENCES
Yanguo Ke, Umair Ashraf, Dongdong Wang, Waseem Hassan, Ying Zou, Ying Qi, Yiwei Zhou, Farhat Abbas
{"title":"Function of Anthocyanin and Chlorophyll Metabolic Pathways in the Floral Sepals Color Formation in Different Hydrangea Cultivars.","authors":"Yanguo Ke, Umair Ashraf, Dongdong Wang, Waseem Hassan, Ying Zou, Ying Qi, Yiwei Zhou, Farhat Abbas","doi":"10.3390/plants14050742","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrangea (<i>Hydrangea macrophylla</i>) is distinguished by having sepals instead of real petals, a trait that facilitates color diversity. Floral color is largely predetermined by structural genes linked to anthocyanin production, but the genetic factors determining floral hue in this non-model plant remain unclear. Anthocyanin metabolites, transcriptome, and the CIE<i>L*a*b*</i> hue system were employed to elucidate the biochemical and molecular mechanisms of floral color formation in three hydrangea cultivars: 'DB' (deep blue), 'LB' (light blue), and 'GB' (green blue). UPLC-MS/MS identified 47 metabolites, with delphinidin, cyanidin, malvidin, petunidin, pelargonidin, and peonidin being prominent. Delphinidins were 90% of the primary component in 'DB'. The dataset identifies 51 and 31 DEGs associated with anthocyanin, flavonoid, and chlorophyll biosynthesis, with <i>CHS</i>, <i>CHI</i>, <i>F3H</i>, <i>F3'5'H</i>, <i>DFR</i>, <i>ANS</i>, <i>BZ1</i>, and <i>3AT</i> displaying the highest expression in 'DB'. Notably, <i>DFR</i> (cluster-46471.3) exhibits high expression in 'DB' while being down-regulated in 'LB' and 'GB', correlating with higher anthocyanin levels in floral pigmentation. Comparative analyses of 'LB' vs. 'DB', 'DB' vs. 'GB', and 'LB' vs. 'GB' revealed 460, 490, and 444 differentially expressed TFs, respectively. WRKY, ERF, bHLH, NAC, and AP2/ERF showed the highest expression in 'DB', aligning with the color formation and key anthocyanin biosynthesis-related gene expression. The findings reveal the molecular mechanisms behind floral pigmentation variations and lay the groundwork for future hydrangea breeding programs.</p>","PeriodicalId":56267,"journal":{"name":"Plants-Basel","volume":"14 5","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901515/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/plants14050742","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrangea (Hydrangea macrophylla) is distinguished by having sepals instead of real petals, a trait that facilitates color diversity. Floral color is largely predetermined by structural genes linked to anthocyanin production, but the genetic factors determining floral hue in this non-model plant remain unclear. Anthocyanin metabolites, transcriptome, and the CIEL*a*b* hue system were employed to elucidate the biochemical and molecular mechanisms of floral color formation in three hydrangea cultivars: 'DB' (deep blue), 'LB' (light blue), and 'GB' (green blue). UPLC-MS/MS identified 47 metabolites, with delphinidin, cyanidin, malvidin, petunidin, pelargonidin, and peonidin being prominent. Delphinidins were 90% of the primary component in 'DB'. The dataset identifies 51 and 31 DEGs associated with anthocyanin, flavonoid, and chlorophyll biosynthesis, with CHS, CHI, F3H, F3'5'H, DFR, ANS, BZ1, and 3AT displaying the highest expression in 'DB'. Notably, DFR (cluster-46471.3) exhibits high expression in 'DB' while being down-regulated in 'LB' and 'GB', correlating with higher anthocyanin levels in floral pigmentation. Comparative analyses of 'LB' vs. 'DB', 'DB' vs. 'GB', and 'LB' vs. 'GB' revealed 460, 490, and 444 differentially expressed TFs, respectively. WRKY, ERF, bHLH, NAC, and AP2/ERF showed the highest expression in 'DB', aligning with the color formation and key anthocyanin biosynthesis-related gene expression. The findings reveal the molecular mechanisms behind floral pigmentation variations and lay the groundwork for future hydrangea breeding programs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plants-Basel
Plants-Basel Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.50
自引率
11.10%
发文量
2923
审稿时长
15.4 days
期刊介绍: Plants (ISSN 2223-7747), is an international and multidisciplinary scientific open access journal that covers all key areas of plant science. It publishes review articles, regular research articles, communications, and short notes in the fields of structural, functional and experimental botany. In addition to fundamental disciplines such as morphology, systematics, physiology and ecology of plants, the journal welcomes all types of articles in the field of applied plant science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信