Location of capture sufficiently characterises lifetime growth trajectories in a highly mobile fish.

IF 3.4 1区 生物学 Q2 ECOLOGY
Joshua S Barrow, Jian D L Yen, John D Koehn, Brenton Zampatti, Ben Fanson, Jason D Thiem, Zeb Tonkin, Wayne M Koster, Gavin L Butler, Arron Strawbridge, Steven G Brooks, Ryan Woods, John R Morrongiello
{"title":"Location of capture sufficiently characterises lifetime growth trajectories in a highly mobile fish.","authors":"Joshua S Barrow, Jian D L Yen, John D Koehn, Brenton Zampatti, Ben Fanson, Jason D Thiem, Zeb Tonkin, Wayne M Koster, Gavin L Butler, Arron Strawbridge, Steven G Brooks, Ryan Woods, John R Morrongiello","doi":"10.1186/s40462-025-00541-w","DOIUrl":null,"url":null,"abstract":"<p><p>Variation in somatic growth plays a critical role in determining an individual's body size and the expression of its life history. Understanding the environmental drivers of growth variation in mobile organisms such as fishes can be challenging because an individual's growth expression integrates processes operating at different spatial and temporal scales. Traditionally, otolith (ear stone) based growth analyses have focussed on temporal environmental variation by assuming an individual spends its whole life at its capture location. This approach ignores the movement potential of individuals and thus the role of spatio-temporal variation in conditions experienced. Here, we develop a modelling framework that incorporates individual movement information reconstructed via the analysis of chemical tracers in otoliths. We assess whether consideration of movement histories is important to estimating growth of a mobile freshwater fish, golden perch (Macquaria ambigua) at three spatial resolutions: basin-scale, reach-scale (movement-exclusive), and reach-scale (movement-inclusive). The predictive capacity of annual growth models slightly improved from the basin to the reach spatial scales (inclusive or exclusive of movement histories). Contrary to expectations, incorporating individual movement information, did not improve our ability to describe growth patterns. Golden perch growth was linked to the magnitude of and variation in spring, summer, and previous-year (antecedent) discharge, and spring temperature. The direction and magnitude of these effects was, however, dependent on life stage. Adults benefitted strongly from any increase in discharge or temperature, whereas juveniles benefitted only from increased summer discharge and grew slower in years characterised by wetter and warmer springs. We suggest that, for highly mobile fish like golden perch and in the absence of fine, 'within reach' scale biological data, coarser 'reach-scale' environmental variation may adequately describe individual growth trajectories.</p>","PeriodicalId":54288,"journal":{"name":"Movement Ecology","volume":"13 1","pages":"18"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912647/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Movement Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40462-025-00541-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Variation in somatic growth plays a critical role in determining an individual's body size and the expression of its life history. Understanding the environmental drivers of growth variation in mobile organisms such as fishes can be challenging because an individual's growth expression integrates processes operating at different spatial and temporal scales. Traditionally, otolith (ear stone) based growth analyses have focussed on temporal environmental variation by assuming an individual spends its whole life at its capture location. This approach ignores the movement potential of individuals and thus the role of spatio-temporal variation in conditions experienced. Here, we develop a modelling framework that incorporates individual movement information reconstructed via the analysis of chemical tracers in otoliths. We assess whether consideration of movement histories is important to estimating growth of a mobile freshwater fish, golden perch (Macquaria ambigua) at three spatial resolutions: basin-scale, reach-scale (movement-exclusive), and reach-scale (movement-inclusive). The predictive capacity of annual growth models slightly improved from the basin to the reach spatial scales (inclusive or exclusive of movement histories). Contrary to expectations, incorporating individual movement information, did not improve our ability to describe growth patterns. Golden perch growth was linked to the magnitude of and variation in spring, summer, and previous-year (antecedent) discharge, and spring temperature. The direction and magnitude of these effects was, however, dependent on life stage. Adults benefitted strongly from any increase in discharge or temperature, whereas juveniles benefitted only from increased summer discharge and grew slower in years characterised by wetter and warmer springs. We suggest that, for highly mobile fish like golden perch and in the absence of fine, 'within reach' scale biological data, coarser 'reach-scale' environmental variation may adequately describe individual growth trajectories.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Movement Ecology
Movement Ecology Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.60
自引率
4.90%
发文量
47
审稿时长
23 weeks
期刊介绍: Movement Ecology is an open-access interdisciplinary journal publishing novel insights from empirical and theoretical approaches into the ecology of movement of the whole organism - either animals, plants or microorganisms - as the central theme. We welcome manuscripts on any taxa and any movement phenomena (e.g. foraging, dispersal and seasonal migration) addressing important research questions on the patterns, mechanisms, causes and consequences of organismal movement. Manuscripts will be rigorously peer-reviewed to ensure novelty and high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信